Изготовлена из синтетического волокна фиолетового. Синтетическое волокно. Применение химических волокон

Время чтения: 4 минуты

Некоторые натуральные целлюлозные волокна обрабатываются и перерабатываются для конкретных целей. Известные волокна, такие как вискоза, ацетат и т. д., получают путем переработки различных природных полимеров.

Первые искусственные волокна, которые были разработаны и изготовлены, использовали полимеры природного происхождения, точнее целлюлозу, которая является сырьем, доступным в больших количествах в растительном мире.

Целлюлоза — это натуральный полимер, который составляет живые клетки всей растительности. Это материал в центре углеродного цикла, а также самый распространенный и возобновляемый биополимер на планете.

Хлопчатобумажные листы и древесная масса, вискоза, медноаммиачный шелк, целлюлозный ацетат (вторичный и триацетат), полиноза, волокно с высоким модулем во влажном состоянии (ВВМ).

  • Целлюлоза является одним из многих полимеров, найденных в природе.
  • Дерево, бумага и хлопок содержат целлюлозу. Целлюлоза — отличное волокно.
  • Целлюлоза состоит из повторяющихся звеньев мономерной глюкозы.
  • Три типа регенерированных целлюлозных волокон представляют собой вискозу, ацетат и триацетат, которые получены из клеточных стенок коротких хлопковых волокон, называемых линтами.
  • Бумага, например, представляет собой почти чистую целлюлозу

Вискоза

Первоначально слово «вискоза» применялось к любому волокну, изготовленному на основе целлюлозы и, следовательно, содержало целлюлозные ацетатные волокна. Тем не менее, определение вискозы было описано в 1951 году и теперь включает в себя текстильные волокна и волокна, состоящие из регенерированной целлюлозы, за исключением ацетата.

  • Вискоза представляет собой регенерированное целлюлозное волокно.
  • Это первое изготовленное человеком волокно.
  • Она имеет зазубренную круглую форму с гладкой поверхностью.
  • При намокании вискоза теряет 30-50% своей силы.
  • Вискоза образуется из естественных полимеров, и поэтому является не синтетическим волокном, а искусственным регенерированным целлюлозным волокном.
  • Волокно продается как искусственный шелк.
  • Существует две основных разновидности вискозного волокна, а именно вискозное и медноаммиачное.

Ацетат

Производное волокно, в котором волокнообразующим веществом является ацетат целлюлозы. Ацетат получают из целлюлозы путем реакции очищения целлюлозы из древесной целлюлозы с уксусной кислотой и уксусным ангидридом в присутствии серной кислоты.

Характеристики ацетатного волокна:

  • Роскошное на ощупь и внешний вид
  • Широкий спектр цветов и блесков
  • Отличная драпируемость и мягкость
  • Относительно быстрое высыхание
  • Устойчивость к усадке, моли и мучнистой росе

Для ацетата разработаны специальные красители, так как он не принимает красители, обычно используемые для хлопка и вискозы.

Ацетатные волокна представляют собой изготовленные волокна, в которых волокнообразующим веществом является ацетат целлюлозы. Эфиры целлюлозы триацетат и ацетат образуются путем ацетилирования хлопковых линтов или древесной целлюлозы с использованием уксусного ангидрида и кислотного катализатора в уксусной кислоте.

Ацетатные и триацетатные волокна очень похожи по внешнему виду на вискозу с постоянной прочностью. Элементы и триацетаты представляют собой умеренно жесткие волокна и обладают хорошей эластичностью при изгибе и деформации, особенно после термообработки.

Устойчивость к абразивному износу ацетата и триацетата невелика, и эти волокна не могут использоваться в применениях, требующих высокой стойкости к истиранию и носке; однако устойчивость этих волокон к трению превосходна. Хотя ацетат и триацетат являются умеренно абсорбирующими, их абсорбция не может сравниться с чистыми целлюлозными волокнами. На ощупь ацетатные ткани несколько более мягкие и более гибкие, чем триацетат. Ткани обоих волокон обладают отличными характеристиками драпировки. Ткани ацетата и триацетата имеют приятный внешний вид и высокую степень блеска, но блеск этих тканей можно модифицировать путем добавления матирующего средства.

Как ацетат, так и триацетат восприимчив к атакам ряда бытовых химикатов. Ацетат и триацетат подвергаются воздействию сильных кислот и оснований и окисляющих отбеливателей. Ацетат обладает только небольшой устойчивостью к солнечному свету, тогда как солнечная устойчивость триацетата выше. Оба волокна имеют хорошую термостойкость ниже их точек плавления.

Ацетат и триацетат не могут быть окрашены красителями, используемыми для целлюлозных волокон. Эти волокна могут быть удовлетворительно окрашены дисперсными красителями при умеренных и высоких температурах, что дает четкие, яркие оттенки. Ацетат и триацетат быстро высушиваются, и их можно подвергать сухой чистке.

XIX век ознаменовался важными открытиями в науке и технике. Резкий технический бум коснулся практически всех сфер производств, многие процессы были автоматизированы и перешли на качественно новый уровень. Техническая революция не обошла стороной и текстильное производство - в 1890 году во Франции впервые было получено волокно, изготовленное с применением химических реакций. С этого события началась история химических волокон.

Виды, классификация и свойства химических волокон

Согласно классификации все волокна подразделяются на две основные группы: органические и неорганические. К органическим относятся искусственные и синтетические волокна. Разница между ними состоит в том, что искусственные создаются из природных материалов (полимеров), но с помощью химических реакций. Синтетические волокна в качестве сырья используют синтетические полимеры, процессы же получения тканей принципиально не отличаются. К неорганическим волокнам относят группу минеральных волокон, которые получают из неорганического сырья.

В качестве сырья для искусственных волокон используются гидратцеллюлозные, ацетилцеллюлозные и белковые полимеры, для синтетических - карбоцепные и гетероцепные полимеры.

Благодаря тому, что при производстве химических волокон используются химические процессы, свойства волокон, в первую очередь механические, можно изменять, если использовать разные параметры процесса производства.

Главными отличительными свойствами химических волокон, по сравнению с натуральными, являются:

  • высокая прочность;
  • способность растягиваться;
  • прочность на разрыв и на длительные нагрузки разной силы;
  • устойчивость к воздействию света, влаги, бактерий;
  • несминаемость.

Некоторые специальные виды обладают устойчивостью к высоким температурам и агрессивным средам.

ГОСТ химические нити

По Всероссийскому ГОСТу классификация химических волокон достаточно сложная.

Искусственные волокна и нити, согласно ГОСТу, делятся на:

  • волокна искусственные;
  • нити искусственные для кордной ткани;
  • нити искусственные для технических изделий;
  • технические нити для шпагата;
  • искусственные текстильные нити.

Синтетические волокна и нити, в свою очередь, состоят из следующих групп: волокна синтетические, нити синтетические для кордной ткани, для технических изделий, пленочные и текстильные синтетические нити.

Каждая группа включает в себя один или несколько подвидов. Каждому подвиду присвоен свой код в каталоге.

Технология получения, производства химических волокон

Производство химических волокон имеет большие преимущества по сравнению с натуральными волокнами:

  • во-первых, их производство не зависит от сезона;
  • во-вторых, сам процесс производства хоть и достаточно сложный, но гораздо менее трудоемкий;
  • в-третьих, это возможность получить волокно с заранее установленными параметрами.

С технологической точки зрения, данные процессы сложные и всегда состоят из нескольких этапов. Сначала получают исходный материал, потом преобразовывают его в специальный прядильный раствор, далее происходит формирование волокон и их отделка.

Для формирования волокон используются разные методики:

  • использование мокрого, сухого или сухо-мокрого раствора;
  • применение резки металлической фольгой;
  • вытягивание из расплава или дисперсии;
  • волочение;
  • плющение;
  • гель-формование.

Применение химических волокон

Химические волокна имеют очень широкое применение во многих отраслях. Главным их преимуществом является относительно низкая себестоимость и продолжительный срок службы. Ткани из химических волокон активно используются для пошива специальной одежды, в автомобильной промышленности - для укрепления шин. В технике разного рода чаще применяются нетканые материалы из синтетического или минерального волокна.

Текстильные химические волокна

В качестве сырья для производства текстильных волокон химического происхождения (в частности, для получения синтетического волокна) используются газообразные продукты переработки нефти и каменного угля. Таким образом, синтезируются волокна, которые различаются по составу, свойствам и способу горения.

Среди наиболее популярных:

  • полиэфирные волокна (лавсан, кримплен);
  • полиамидные волокна (капрон, нейлон);
  • полиакрилонитрильные волокна (нитрон, акрил);
  • эластановое волокно (лайкра, дорластан).

Среди искусственных волокон самые распространенные - это вискозное и ацетатное. Вискозные волокна получают из целлюлозы - преимущественно еловых пород. С помощью химических процессов этому волокну можно придать визуальную схожесть с натуральным шелком, шерстью или хлопком. Ацетатное волокно производят из отходов от производства хлопка, поэтому они хорошо впитывают влагу.

Нетканые материалы из химических волокон

Нетканые материалы можно получать как из натуральных, так и из химических волокон. Часто нетканые материалы производят из вторсырья и отходов других производств.

Волокнистая основа, подготовленная механическим, аэродинамическим, гидравлическим, электростатическим или волокнообразующим способами, скрепляется.

Основной стадией получения нетканых материалов является стадия скрепления волокнистой основы, получаемой одним из способов:

  1. Химический или адгезионный (клеевой) - сформованное полотно пропитывается, покрывается или орошается связующим компонентом в виде водного раствора, нанесение которого может быть сплошным или фрагментированным.
  2. Термический - в этом способе используются термопластичные свойства некоторых синтетических волокон. Иногда используются волокна, из которых состоит нетканый материал, но в большинстве случаев в нетканый материал еще на стадии формования специально добавляют небольшое количество волокон с низкой температурой плавления (бикомпонент).

Объекты промышленности химических волокон

Поскольку химическое производство охватывает несколько областей промышленности, все объекты химической промышленности делятся на 5 классов в зависимости от сырья и области применения:

  • органические вещества;
  • неорганические вещества;
  • материалы органического синтеза;
  • чистые вещества и химреактивы;
  • фармацевтическая и медицинская группа.

По типу назначения объекты промышленности химических волокон разделяются на основные, общезаводские и вспомогательные.

Искусственные волокна. Среди химических волокон по объему выпуска первое место занимает искусственное вискозное волокно. Основным веществом для получения вискозного волокна служит древесная целлюлоза и дешевые доступные химические вещества. Достоинством вискозного волокна является высокая экономическая эффективность его производства и переработки. Так, при производстве 1 кг вискозной пряжи трудовые затраты в 2-3 раза ниже затрат на производство такой же пряжи из хлопка и в 4,5-5 раз ниже производства 1 кг шерстяной пряжи.

Выпускается вискозное волокно различной длины и толщины. Толщина элементарного волокна вискозного шелка бывает от 0,5 до 0,2 текс.

Вискозные волокна обладают достаточной прочностью, однако в мокром состоянии их прочность падает до 50-60%. Их недостатком является способность усаживаться, т. е. сокращаться по длине, особенно после стирки изделий.

Эти волокна обладают высокими гигиеническими свойствами, так как они характеризуются способностью хорошо впитывать влагу. Вискозные волокна термоустойчивые.

При нагревании они не размягчаются и выдерживают нагрев без разрушения до 150°. При более высоких температурах (175-200°) наступает процесс разложения волокна.

Вискозные волокна с повышенными свойствами получили название полинозных. По своим свойствам они приближаются к хлопковому волокну.

На основе хлопковой или древесной целлюлозы получают другие искусственные волокна - медноаммиачные и ацетатные.

Медноаммиачное волокно по своим свойствам напоминает вискозное волокно. Производится оно в небольших количествах, так как его производство гораздо дороже, чем производство других искусственных волокон. Применяется главным образом в смеси с шерстью.

Ацетатные волокна выпускают двух видов: диацетатные и триацетатные. Диацетатные волокна называют обычно ацетатными. Ацетатные волокна обладают достаточной прочностью. Их разрывное удлинение 18-25%. Разрывная прочность ацетатного волокна в мокром состоянии снижается на 40-50%, а триацетатного - на 10-15%. Ацетатное волокно поглощает примерно 6,5% влаги, а триацетатное - не более 1-1,5%.

Ацетатные волокна по своим свойствам занимают промежуточное положение между искусственными и синтетическими волокнами.

В отличие от вискозных ацетатные волокна термопластичны и при температуре 140-150° начинают деформироваться.

Применение ацетатных волокон в смеси с вискозными позволяет значительно снизить сминаемость изделий. Ацетатные волокна не окрашиваются красителями, применяемыми для крашения вискозных волокон, поэтому применение ацетатных волокон в смеси с вискозными позволяет создавать различные колористические эффекты, облагораживать лицевую поверхность ткани.

Из других искусственных волокон в производстве тканей используют стеклянные и металлические; металлические нити применяют для придания тканям различных декоративных эффектов; они носят название алюнит, люрекс, метлон и др.

Синтетические волокна. Из синтетических волокон наибольшее распространение получили полиамидные волокна, к которым относятся капрон, анид, энант и другие волокна. В нашей стране среди полиамидных волокон первое место занимает капроновое волокно. Для его получения используют смолу капролактам, которую получают путем химического синтеза из относительно простых органических веществ.

Полиамидные волокна обладают рядом ценных свойств: высокой прочностью на разрыв, упругостью и исключительной устойчивостью к истиранию.

Преимуществом полиамидных волокон является высокая стойкость к истиранию и многократным деформациям.

В результате каждый день их используют миллиарды людей . И, в самом деле, любой из нас стремится предстать перед окружающими в наиболее привлекательном виде за счет использования наиболее привлекательной одежды, которую создают из самых лучших волокон, какие только существуют . Многим из нас требуется биоразлагаемый шовный материал в случае хирургического вмешательства. Мы все живем в домах, в которых необходимы волокна для воздушных и водяных фильтров . Удобная в обращении обтирочная салфетка из волокна помогает легко производить уборку на нашей кухне. И, действительно, широкий диапазон волокон позволяет создавать бесконечной количество применений.

Мы используем натуральные и синтетические волокна. Натуральные волокна использовались с незапамятных времен . Недавно на рынок были представлены новые бамбуковые волокна 1 , которые начинают широко использоваться . Эти волокна демонстрируют противомикробные свойства, и их можно использовать для создания многих текстильных применений, а также «зеленых» композитов. Хлопок, шелк, шерсть или лен (возможно, древнейшее волокно в мире) используются во всех сферах нашей повседневной жизни.

Интересно, что известные волокна являются полимерами. Большинство из них представляет собой просто линейные макромолекулы. Следует отдать должное д-ру Штаудингеру, лауреату Нобелевской премии, который был первым, кто отметил, что полимеры представляют собой линейные ковалентно связанные молекулы и не являются агрегатами, как считалось ранее. Он заложил основы химии синтетических органических полимеров и волокон . Вскоре после этого открытия пионерские работы д-ра Каротерса из компании Du Pont и д-ра Шлака из компании BASF представили нам полимерные волокна найлона 6,6 и найлона 6 соответственно. Позднее, в 1946 г. Винфилдом и Диксоном была разработана технология производства полиэтилен терефталата (PET ), и на рынке появились полиэфирные штапельные волокна. Найлоны и PET являются основными полимерными волокнами. На протяжении ряда лет было разработано множество других полимеров, и каждый день синтезируется множество новых макромолекул . В последние годы наблюдались значительные достижения в области разработки новых полимеров и полимерных волокон. Существенные достижения были достигнуты в области производства высокоэффективных волокон, эластичных волокон и нановолокон, произведенных из биополимеров за счет использования технологии электропрядения, а также высокоэффективных полиэфирных волокон. В результате, в этом номере Polymer Reviews мы ставим своей задачей информирование читателя о современном положении дел и обзорное рассмотрение этих новых достижений.

Высокоэффективные волокна

В последнее время большие усилия сосредотачиваются на производстве полимеров со сверхвысоким модулем. Ковалентные связи, присутствующие в этих полимерах, отвечают за их прочность . Тем не менее, синтетические полимеры обычно не демонстрируют соответствующего потенциального высокого модуля. Высокий модуль и прочность могут быть результатом структурного совершенства, такого как прямые, прекрасно выстроенные, стабильные и плотно упакованные цепи. Обычно присутствует сочетание расширенных цепей и высокой кристаллической ориентации .

Хорошо известно, что самые высокие значения модуля упругости, о которых сообщается для линейных полимеров, обычно намного меньше расчетных теоретических значений . Накамае и его коллеги 3 измерили "теоретический" модуль упругости , который был определен на основе наблюдения за зависящей от напряжения рентгеновской дифракцией в направлении полимерной цепи. Такое теоретическое значение модуля упругости сопоставляллось с окончательным модулем полимера. Большинство полимеров демонстрируют модули упругости при растяжении значительно ниже тех значений, которые имеются у их кристаллических решеток в направлении цепи . Только у ультра вытянутого полиэтилена с высокой молекулярной массой (UHMW PE ), изотактического полипропилена и кевлара модули, близкие к теоретическим значениям . Полиамидные волокна смогли достигать максимально только 1/20 своего теоретического значения.

В случае с полимерами с гибкой основной цепью, прочная и жесткая полимерная структура может быть получена за счет преобразования высоко ориентированных и расширенных конформаций цепей . В результате были получены значительно более высокие свойства упругости на разрыв, аналогичные свойствам ультра вытянутого полиэтилена с высокой молекулярной массой . Высокий модуль полиэтилена был получен за счет прядения из раствора (прядения геля) со сверх высокой степенью вытяжки. Закариадис и его коллектив успешно осуществляли вытяжку полиэтилена со сверхвысоким молекулярным весом более 200 раз и получили почти теоретическое значение модуля при такой степени вытяжки. Кристаллическая морфология полиэтилена со сверхвысокой молекулярной массой, получаемого из раствора (UHMWPE ), была деформирована втонковолокнистые структуры при значениях степени вытяжки, превышающих 200. Такая высокая степень вытяжки образуется за счет меньшего числа переплетений цепи и между- и межпластиновных связующих молекул в такой более упорядоченной морфологии кристаллов со сложными цепями и повторным входом . Высокоэффективные полиэтиленовые волокна в настоящее время производятся в промышленном масштабе с использованием метода гелепрядения компанией DSM High Performance Fibers из Нидерландов, совместным предприятием Toyobo / DSM в Японии, а также компанией Honeywell (ранее Allied Signal или Allied Fibers ) из США. Прочность Spectra 1000 достигает значения модуля Юнга 124 ГПа и прочности на разрыв 3.51 ГПа. По сообщению Афшари и Ли, была проведена большая работа для повышения термической стабильности этих волокон.

Компания Du Pont de Nemours в настоящее время разрабатывает товарные волокна и пряжи из M 5. Очень интересный мономер , 2,5-дигидрокситерефталевая кислота, используется для производства поли-2,6-диимидозопиридинилен-1,4-(2,5-дигидрокси)фенилена (PIPD ). Уникальной чертой этих полимеров является то, что две гидроксильные группы (на терефталевой кислоте) могут образовывать межмолекулярные связи и, следовательно, фибриллирование, которое часто является проблемой для арамидных волокон, здесь практически исключается . В результате, у волокон M 5 самый высокий предел прочности при сжатии среди всех синтетических волокон, Исследовательская оценка ультрафиолетовой стабильности М5 показала наличие превосходных эксплуатационных характеристик в этой области. Механические свойства этого нового волокна делают его конкурентоспособным по отношению к углеволокну при изготовлении многих применений, имеющих легкие, тонкие, выдерживающие нагрузку, жесткие, современные композитные компоненты и структуры . Огромные усилия были предприняты для разработки сверхпрочного кевлара, и, в последнее время, волокон PBO . Не так давно компания DuPont de Nemours объявила о планах расширения производства кевларовых полимеров на своем предприятии в Спруансе на 25% к 2010 г. для того, чтобы быть в состоянии удовлетворить растущий спрос. Благодаря своей высокой прочности на разрыв,высокому рассеянию энергии, низкой плотности и снижению веса, а также удобству кевлар используется при производстве пуленепробиваемых жилетов, шлемов, средств защиты собственности , панелей, средств защиты автомобилей и стратегического защитного экранирования для защиты человеческой жизни.

Волокна PBO были запущены в промышленное производство компанией Toyobo Co . в 1998 г. под торговым названием Zylon после почти 20 лет исследований в Соединенных Штатах и Японии . Волокна РВО обладают выдающими свойствами в области модуля упругости при растяжении (352 ГПа) и прочности на разрыв (5.6 ГПа) по сравнению с другими имеющимися на рынке высокоэффективными волокнами. Их удельная прочность и удельный модуль в 9 и 9.4 раз выше чем у стали . 6,7 К сожалению для PBO , высоким эксплуатационным характеристикам сопутствуют и существенные проблемы. Хорошо известна плохая устойчивость РВО к воздействию ультрафиолетовых лучей и видимого излучения. У РВО также отсутствует осевая прочность при сжатии . Прочность волокна РВО на разрыв также снижается в высокотемпературных и влажных средах . Немалые усилия были приложены для того, чтобы осуществить химическое изменение волокна РВО для повышения осевой прочности при сжатии .

И волокно кевлар, и волокно РВО рассмотрены Афшари и его коллегами в этой статье. Прочие высокоэффективные продукты, такие как волокна Vectran или PVA (Kurray ) здесь рассматриваться не будут. Мы надеемся собрать данные для другой работы о специальных синтетических волокнах в ближайшем будущем .

Эластичные волокна

Обзор эластичных волокон в данной статье представлен работой профессора Ху и его коллег из Гонконгского Политехнического университета .

Целый ряд компаний производит множество эластичных волокон, которые обладают эластичностью и способностью к восстановлению . Их можно получать с помощью прядения полимеров со специальной молекулярной структурой или модифицированных полимеров. В том, что касается упругого удлинения, эластичные волокна можно классифицировать как высокоэластичные волокна (удлинение 400-800%), среднеэластичные волокна (150-390%), низкоэластичные волокна (20-150%), и микроэластичные волокна с упругим удлинением менее 20%.

Традиционные эластичные волокна, такие как спандекс или лайкра, это хорошо известные сегментированные полиуретановые волокна, которые производятся промышленно с использованием технологии сухого прядения. Тем не менее, были разработаны многие новые эластичные продукты, включая высоко гигроскопичный и высвобождающий влагу спандекс (компания AsahiKasei ) или очень мягкий спандекс. И это лишь несколько примеров.

Еще одним интересным продуктом, который может термоотверждаться с волокнами РЕТ, является легко отверждаемый спандекс. У полиэфирного спандекса плохая термическая стабильность, поэтому его нельзя переплетать с полиэфирным волокном . В компании Asahi Kasei разработали низкотемпературный отверждаемый спандекс, который называется Roica BX , и обладает не только хорошим отверждением, но также может переплетаться с полиэфирным волокном и отверждаться при высокой температуре .

Еще одной инновацией является волокно со скрытой извитостью. В компании Du Pont de Nemours (Уилмингтон, Делавэр ) приступили к изучению первой пряжи со скрытой извитостью (из полипропилена) еще в начале шестидесятых годов. Недавно на рынке приобрели популярность новые запущенные в промышленное производство продукты со скрытой извитостью компании Du Pont , полиэфир T -400 и найлон T -800. Компания Unitica (Хиого, Япония) также запустила в промышленное производство пряжи со скрытой извитостью, Z -10 и S -10. Кроме того, двухкомпонентное волокно из найлона и полиуретана под названием Sideria , разработанное компанией Kanebo (Япония), позволяет приспособить до нужной степени термическую обработку к самой скрытой извитости.

XLAT M представляет собой растягивающееся волокно на полиолефиновой основе, которое обладает природной устойчивостью к воздействию агрессивных химических веществ, высокой теплоты и ультрафиолетовых лучей, и обеспечивает преимущества в области эксплуатационных характеристик, сопоставимые с преимуществами существующих эластичных волокон . Эта очень новая и интересная технология разработана компанией Dow Chemical , и представлена здесь Кейси, нашим постоянным автором .

Включение волокна XLA в ткани раскрывает несравненные возможности для разработки удобной в обращении и износостойкой одежды с улучшенной способностью сохранять форму. В США мы видим волокно Lastol , это новое родовое название для данного эластичного волокна на основе полиолефина . 10 " 13 В специальной микроструктуре XLA сочетаются длинные и эластичные цепи с кристаллическими и ковалентными связями или перекрестными связями с формированием сложной сети . За счет использования собственной технологии Dow по сшиванию с помощью электронного луча осуществляется управление длиной цепи, и количеством кристаллитов для придания волокну XLA уникального эластичного профиля . Высокое растяжение достигается при низких уровнях усилия, что позволяет одежде без труда растягиваться и сгибаться, сохраняя при этом свою изначальную форму .

Другой технологией будущего являются волокна с запоминанием формы. Как отмечает профессор Ху: "Задачей на будущее является исследование двухсторонних многофункциональных и имеющих много стимулов полимеров с бионическим запоминанием формы, которые можно будет активировать с помощью тепла, влажности, химических веществ, магнетизма и электричества или с помощью оптического стимула, и которые будут иметь функции устойчивости к воздействию ультрафиолетового излучения, а также противобактериальные, антистатические и препятствующие образованию плесени; а также создание системной, обобщенной и интегрированной теории полимеров с запоминанием формы наряду с применением таких полимеров с запоминанием формы при производстве текстиля". Не далек тот день, когда все эти идеи будут воплощены в жизнь в наших лабораториях и на наших промышленных предприятиях .

Волокнистые материалы, изготовленные электропрядением

С помощью традиционных технологий прядения волокна, таких как мокрое прядение, сухое прядение, прядение из расплава и гелепрядение можно производить полимерные волокна с диаметрами до значений микрометрового диапазона . При уменьшения диаметра волокна с микрометров до нанометров можно получить очень большое отношение площади поверхности к объему. Эти уникальные свойства делают полимерные нановолокна идеальными кандидатами для использования во многих важных применениях . Полимерные волокна могут генерироваться из электростатически стимулируемой струи полимерного раствора или полимерного расплава (Рис. 1). Эта технология, известная как технология электропрядения, привлекала большое внимание в предыдущем десятилетии благодарятому, что она обеспечивала возможность повторяемого производств полимерного волокна с диаметром в диапазоне от 50 до 500 нм. 15 " 19 Благодаря небольшим размерам ячеек и большой площади поверхности, которые изначально присущи текстильным, материалам, изготовленным электропрядением, эти ткани являются многообещающими для производства защитной одежды для солдат (они позволят максимально повысить выживаемость, возобновляемость и боевую эффективность индивидуальных систем солдатской одежды для борьбы с экстремальными погодными условиями , и в условиях баллистической, ядерной, биологической и химической войны ).

Синтетикой называют любой продукт, полученный методом химического синтеза, чаще всего синтетическую ткань.

Синтетические волокна - это волокна, производимые из полимеров, которые не встречаются в природе, а синтезируются из мономеров. Сырьем для их производства являются продукты переработки нефти, каменного угля и газа. Их относят к классу химических (наряду с искусственными).

Нельзя путать с искусственными волокнами, которые также относятся к химическим, но производятся из натурального сырья с применением химических реагентов.

История

Из чего делают ткани, известно всем - из разных видов волокон. До середины прошлого столетия мы использовали исключительно натуральные ткани: хлопок, лен, шелк и т. д. В 1940-1950-х годах научились производить искусственные волокна (вискозу, ацетат).

  • Производство волокон из расплавленных синтетических полимеров начало развиваться в странах с развитой промышленностью в 1940-1970-х годах. В этот период такие волокна лишь частично заменяли натуральные, использовались в качестве добавки.

Первым таким волокном был нейлон. Его изобрел сотрудник компании Дюпон Уоллес Карозерс в 1935 году. Новый материал отличался особой прочностью и малыми затратами на производство, быстро приобрел популярность.

  • С 70-х годов прошлого столетия производство синтетики сильно возросло, и холст из синтетических волокон стал широко применяться в качестве самостоятельного материала.

Виды и свойства

Общие характеристики и преимущества синтетических волокон и тканей любого вида:

  • прочность;
  • устойчивость к воздействию бактерий и микроорганизмов;
  • износостойкость;
  • несминаемость.

Недостатками является то, что волокна плохо впитывают воду и сильно электризуются.

Вид и название зависит от того, какой продукт был использован в качестве исходного (к его названию добавляется приставка поли-). Ткани, выработанные из таких волокон имеют различные торговые названия (зачастую в каждой стране есть свое). Все они делятся на две большие группы:

  • гетероцепные. Макромолекулы содержат атомы углерода и других элементов. К ним относятся полиамидные, полиуретановые и полиэфирные волокна;
  • карбоцепные. Макромолекулы содержат только атомы углерода. Все остальные синтетические волокна.

Полиамидные

Прочные при растяжении, устойчивы к истиранию и многократным изгибам, не подвергаются воздействию многих химических веществ, низких температур, плесени, бактерий. Имеют низкий показатель термо- и светостойкости. Распространенные торговые названия: нейлон, капрон, анид.

Полиуретановые

Широко известные спандекс, лайкра, неолан. Главным преимуществом является высокая степень эластичности без потери прочностных характеристик. Стойкие к истиранию. Эластичное, упругое и устойчивое к воздействию химических реагентов волокно обладает существенным недостатком - малой теплостойкостью.

Поливинилспиртовые

Обладают прочностью и устойчивостью к истиранию и воздействию микроорганизмов, света кислот и щелочей. Торговые названия: винол, куралон, мтилан. Отличительная черта винола - высокая гигроскопичность.

Полиэфирные (полиэстер)

Лавсан. Достоинства: упругость, термостойкость, низкая теплопроводность и малая степень усадки. Недостатки: разрушается при действии кислот и щелочей, жесткий, плохо впитывает воду и сильно электризуется.

Полиакрилонитрильные

Обладают менее высокой стойкостью к истиранию, чем полиамид и полиэфир. Устойчивы к воздействию микроорганизмов (и моли), обладают формоустойчивостью, изделия из них практически не мнутся. По внешнему виду очень напоминают натуральную шерсть. Наиболее известны нитрон и акрилан.

Полиолефиновые

Сырьем для их изготовления являются полиэтилен и полипропилен. Очень легкие, прочные и устойчивые к износу, воздействию химических реагентов и микроорганизмов. Обладают низкой гигроскопичностью, неустойчивы к воздействию температур. Даже при 50-60 градусах изделия из них дают значительную усадку. Затраты на производство минимальные.

Применение

В чистом виде некоторые виды синтетических волокон не используются, в основном их добавляют к другим волокнам (натуральному хлопку, льну, шерсти), чтобы получить ткани с улучшенными характеристиками.

  • Так, добавление даже небольшого процента эластана или лайкры сделает ткань более эластичной. Их таких тканей и трикотажных полотен изготавливают женскую и мужскую повседневную, спортивную и верхнюю одежду, чулки и другие изделия.
  • Из полиакрилонитрильного волокна делают искусственный мех, трикотажное полотно, ковры и напольные покрытия, одеяла.
  • Из полиэстеровой нити изготавливают ткани и трикотажи для производства одежды, домашнего текстиля и материалов технического назначения. Штапельное волокно добавляют к хлопку, льну, шерсти и получают прочные материалы, из которых производят все группы одежды, ковровые изделия, искусственный мех. Войлок из полиэстера во многом превосходит по качеству натуральный шерстяной войлок.

Уход за изделиями

  • Стирают изделия из синтетических волокон при температуре 30-40 градусов. Полиэстер - до 60 градусов. Для белых вещей используют универсальные порошки, для цветных - специальные для тонких и цветных тканей. Режим стирки можно выбирать любой в зависимости от степени загрязнения и вида ткани. Отжимать можно в стиральной машине, количество оборотов уменьшить до минимума.
  • Сушить в машине такие изделия нельзя, так как образующиеся складки потом будет очень сложно разгладить. Предпочтительна сушка на открытом воздухе или в хорошо проветриваемом помещении. Запрещено сушить синтетику на батареях.
  • Гладят синтетику на режиме «шелк». Нейлон гладят при минимальной температуре, не увлажняя.

Публикации о синтетических тканях

Загрузка...
Top