Воздуходувки на очистных сооружениях подбор. Воздуходувка. Управляемые воздушные клапаны

Регулирование подачи воздуха в аэротеках на очистных сооружениях – это возможность эффективно экономить электрическую энергию.

Объектом управления является технологический процесс очистки сточных вод с использованием бактерий, содержащихся в активном иле. Сточные воды подаются в секции аэротек, где находится активный ил с бактериями. Для активации бактерий и перемешивания иловой смеси в секции подается воздух от турбовоздуходувок. Контроль за содержанием растворенного кислорода в аэротеках производится лабораторным анализом, на основании которого осуществляется регулирование подачи воздуха в аэротеки системой запорной арматуры в ручном режиме.

Данная система является сложной с точки зрения требований к алгоритмам управления по причине влияния большого числа факторов:

Количество подаваемого кислорода;

Неоднозначности поведения биологической системы активного ила;

Температуры окружающей среды;

Степени концентрации в сточной воде загрязняющих веществ и других сооружениях.

В общем, описание подобных систем не укладывается в традиционные модели теории автоматического регулирования из-за факторов, учет влияния которых прогнозировать почти невозможно. Например, плотность воздуха и сжимаемость воздуха существенно зависят от температуры, а поэтому и контуры регулирования подачи воздуха необходимо перестраивать в зависимости от условий окружающей среды.


Непрерывный контроль концентрации растворенного кислорода в аэротеках – залог качественной очистки и снижения расхода электроэнергии на воздуходувках. Имевшееся оборудование на предприятии (турбовоздуходувки ТВ-175) и метод лабораторного измерения концентрации растворенного кислорода морально устарели и создают проблему высокой нестабильности и перерасхода электрической энергии

На сегодняшний день наиболее совершенным является автоматический регулятор в комплексе с аэроционным нагнетателем для биологической обработки стоков и системой непрерывного измерения кислорода. Регулирование производительности таких установок осуществляется по средствам диффузорного направляющего аппарата с регулируемыми лопатками или входного направляющего аппарата с предварительной закруткой потока, а возможна также комбинация двух названных систем. Система непрерывного измерения кислорода, включающая в себя первичный преобразователь с датчиком, погружающимся в воду, а также вторичного преобразователя, использующего современную технологию микропроцессорной обработки сигнала, формирует сигнал в соответствие с концентрацией растворенного кислорода, который поступает в установку по нагнетанию воздуха и далее автоматически происходит изменение количества воздуха, поступающего в аэротеки.

В соответствие с методикой расчета удельного расхода воздуха на объем поступающих стоков, определено количество воздуха, подаваемого в аэротеки – 18030 м 3 /ч.


Произведем расчет удельного расхода воздуха на объем поступающих стоков 28000 м 3 /сут.

Удельный расход воздуха

где: q 0 – удельный расход кислорода воздуха, на 1мг снятой БПК- полной.

Для полной очистки БПК20 принимается 1,1.

К 1 – коэффициент, учитывающий тип аэротека, принимаем 2,0 для первой очереди, 1,95 – второй очереди;

К 2 – коэффициент зависящий от глубины погружения аэратора:

2,08 = первая очередь;

2,92 – вторая очередь

К т - коэффициент, учитывающий температуру сточных вод

К т = 1+0,02·(T w -20), где: T w средняя температура воды за летний период;

К 3 – коэффициент качества воды, принимается для городских сточных вод 0,85.

С а – растворимость кислорода воздуха в воде, мг/л;

Таблицам растворенности кислорода воздуха в воде Lex – БПК 20 очищенной сточной воде с учетом снижения БПК при первичном отстаивании. Данные по БПК 20получены из информации о качественном составе нормативно-очищенных сточных вод, испытательной лабораторией КЖУП «Уником»: БПК пол.пост. 53,9 мг/л, БПКпол.очищ. 5,1 мг/л.

К т = 1+0,02 · (22,1-20)=1,042

С а = 1+· С т, где: Н – глубина погружения аэраторов, м;

С т – растворимость кислорода в воде. (Принимаем по таблице 27, Василенко. Водоотведение. Курсовое проектирование).

Саl = 1+· 8,83 = 10,12

q airl = 1,1· = 18,75

q airll = 1,1· = 12,16

Суточный расход воздуха по удельному расходу,определим по формуле:

Q = q air + q ср.сут. , м 3 /сут,

где: q air -удельный расход воздуха;

q ср.сут - среднесуточный расход сточных вод, поступающих на очистку, м 3 /сут (28000 м 3 /сут).

Q I = 18,75·14000 = 262500 м 3 /сут

Q II = 12,16 · 14000 = 170240 м 3 /сут

Определим часовой расход воздуха

Q 4 I = =10938 м 3 /ч

Q 4 II = =7093 м 3 /ч

Общий расход равен

О р = Q 4 I + Q 4 II = 10938 + 7093 = 18031 м 3 /ч

Таким образом, необходимое количество воздуха, подаваемое на аэротеки составит 18031 м 3 /ч.

В настоящий момент установлено следующее нагнетательное оборудование:

1. турбовоздуходувка ТВ-175 производительностью 10000 м 3 /ч – 2 шт.

2. турбовоздуходувка ТВ-80 производительностью 6000 м 3 /ч – 2 шт.

3. турбовоздуходувка ТВ-80 производительностью 4000 м 3 /ч – 2 шт.

Для получения расчетного удельного расхода воздуха необходимо включать минимум две воздуходувки: одну воздуходувку ТВ-175 с установленной электрической мощностью 250 кВт и одну воздуходувку ТВ-80 с установленной электрической мощностью 160 кВт при номинальной нагрузке.

Учитывая физический и моральный износ нагнетательного оборудования, работающего с 1983 года, предлагается установить одноступенчатый центробежный компрессор с многолопастным открытым рабочим колесом турбинного типа в комплексе с системой регулирования подачи воздуха при помощи линейных сервомоторов с ниже перечисленными требованиями и показателями технологического оборудования:


Исходные данные

Для обеспечения подачи воздуха в количестве 12000 м 3 /ч необходимо включать две воздуходувки ТВ-80 суммарной мощностью 320 кВт.

Установленная электрическая мощность действующего технологического оборудования – 320 кВт - при 12000 м 3 /ч

Установленная электрическая мощность нового технологического оборудования – 315 кВт - при 16000 м 3 /ч, а при 12000 м 3 /ч - 249 кВт.

Определяем годовую экономию электрической энергии при установке новогооборудования:

Э э = (320 - 249) ·0,75 · 24 · 365 · 10 -3 = 466 тыс.кВт·ч или 130,5 т у.т

Стоимость сэкономленного топлива при цене 1 т у.т.=210$ (по данным департамента по энергоэффективности):

С = 130,5 · 210 = 27405 $ = 232942,5 тыс. р.

Срок окупаемости мероприятия:

где К – капиталовложения в мероприятие, 2000000 тыс. р.;

C – экономия от внедрения мероприятия, тыс. р.;

Т = == 8,6 года.

Примечание: Уточнение всех сумм капиталовложений по внедрению предложенных мероприятий и сроков окупаемости производится после разработки проектно сметной документации

Ю.В. Горнев (Генеральный директор ООО «Вистарос»)

Достаточно известным является тот факт, что от 60 до 75 процентов энергопотребления канализационных очистных сооружений (КОС) городов и крупных промышленных предприятий приходятся на подачу воздуха в систему аэрации. В данной статье рассматриваются вопросы возможной экономии энергопотребления в системе аэрации за счет применения энергоэффективных элементов системы.

Резервы экономии энергопотребления в системе аэрации КОС огромны, они могут составлять 70% и более. Рассмотрим основные элементы данной системы, существенно влияющие на энергопотребление. Если опустить такие вопросы, как необходимость поддержания в хорошем рабочем состоянии трубопроводов подачи воздуха и т.п., то к ним относятся:

  1. Наличие первичных отстойников на КОС, которые позволяют снизить Биологическую Потребность в Кислороде (БПК) и Химическую Потребность в Кислороде (ХПК) стоков на входе аэротенков. Как правило первичные отстойники уже присутствуют на большинстве крупных КОС.
  2. Внедрение процесса нитрификации-денитрификации, позволяющего увеличить количество растворенного кислорода в возвратном активном иле. Данный процесс все шире внедряется при строительстве и реконструкции КОС.
  3. Своевременное обслуживание и замена аэраторов.
  4. Применение управляемых воздуходувок оптимальной мощности, внедрение единой системы управления для всех воздуходувок.
  5. Применение специализированных управляемых клапанов в системе распределения воздуха по аэротенкам.
  6. Введение системы управления каждым клапаном и всеми клапанами по данным с датчиков растворенного кислорода, установленных в бассейнах аэрации.
  7. Применение расходомеров воздуха для стабилизации процесса распределения воздуха и оптимизации уставки по минимальному уровню растворенного кислорода для системы управления клапанами.
  8. Введение в систему управления дополнительной обратной связи по датчику аммония на выходе из аэротенков (применяется в определенных случаях).

Первые два пункта (первичные отстойники и внедрение нитрификации-денитрификации) относятся в большей степени к вопросам капитального строительства на КОС и в данной статье подробно не рассматриваются. Ниже рассматриваются вопросы внедрения современных высокотехнологичных модулей и систем, позволяющих добиться существенного сокращения потребления электроэнергии на КОС. Данные модули и системы могут внедряться как параллельно с решением первых двух пунктов, так и независимо от них.

Основным потребителем электроэнергии в системе подачи воздуха для аэрации являются воздуходувки. Их правильный выбор является основой энергосбережения. Без этого все остальные элементы системы не дадут нужного эффекта. Тем не менее мы начнем не с воздуходувок, а будем следовать тому порядку, в котором необходимо производить подбор всех модулей.

Аэраторы

Одной из основных характеристик аэраторов является удельная эффективность растворения кислорода, измеряемая в процентах на один метр глубины погружения аэраторов. Для современных новых аэраторов это значение составляет 6% и даже 9%, для старых аэраторов оно может составлять 2% и ниже. Конструкция аэраторов и применяемые материалы определяют срок их эксплуатации без потери эффективности, который для современных систем составляет от 6 до 10 лет и более. Выбор конструкции, количества и расположения аэраторов осуществляется по таким параметрам, как БПК и ХПК стоков на входе в систему аэрации, по объему поступающих стоков в единицу времени и по конструкции аэротенков. Если мы имеем дело с реконструкцией КОС с очень старыми аэраторами, находящимися в плохом состоянии, то, в некоторых случаях, только замена аэраторов и установка соответствующих новым аэраторам воздуходувок позволит сократить энергопотребление на 60-70%!

Воздуходувки

Как сказано выше, воздуходувки являются основным элементом, обеспечивающим экономию потребляемой электроэнергии. Все остальные элементы позволяют сократить потребность в подаче воздуха или снизить сопротивление воздушному потоку. Но если при этом оставить старую неуправляемую воздуходувку с низким КПД – экономии не будет. Если на станции аэрации используется несколько неуправляемых воздуходувок, то, теоретически, оптимизировав другие элементы системы и добившись снижения потребности в подаче воздуха, можно вывести из эксплуатации и перевести в резерв несколько воздуходувок из числа ранее задействованных и, таким образом, добиться снижения энергопотребления. Можно также пытаться компенсировать суточные колебания потребности системы аэрации в кислороде путем просто включения или отключения резервной воздуходувки.

Однако значительно более эффективным является применение управляемой воздуходувки, точнее, блока из нескольких управляемых компрессоров. Это позволяет обеспечить подачу воздуха в точном соответствии с потребностью, которая существенно изменяется в течение суток, а также меняется в зависимости от сезона и других факторов. Обычная постоянная подача воздуха неуправляемыми воздуходувками всегда является избыточной и приводит к перерасходу электроэнергии, а в некоторых случаях и к нарушению технологического процесса нитрификации-денитрификации из-за избытка кислорода в аэротенках. При этом недостаток подачи воздуха приводит к превышению загрязняющими веществами в стоке на выходе КОС предельно допустимых концентраций (ПДК), что недопустимо.

Точное управление подачей воздуха при постоянном контроле уровня растворенного кислорода в аэротенках (а в некоторых случаях – и при постоянном автоматическом контроле концентрации аммония и других загрязняющих веществ в стоке на выходе из аэротенков) обеспечивает оптимальный уровень энергопотребления при гарантированном соответствии очищенных стоков существующим нормативам.

Необходимость наличия нескольких воздуходувок в блоке (например, двух больших и двух маленьких) связана с тем, что диапазон регулирования воздушного компрессора сильно ограничен. Он находится в пределах, в лучшем случае, от 35% до 100% мощности, чаще от 45% до 100%. Поэтому одна управляемая воздуходувка далеко не всегда может обеспечить оптимальную подачу воздуха с учетом суточных и сезонных изменений потребности. На сегодня наиболее известными являются три типа воздуходувок: роторные, винтовые и турбо.

Выбор нужного типа воздуходувки производится в основном по следующим параметрам:

— максимальная и номинальная потребность подачи воздуха – зависит от параметров установленных аэраторов, которые в свою очередь выбираются исходя из их эффективности и из потребности всей системы аэрации в растворенном кислороде, как было описано выше;

— требуемое максимальное избыточное давление на выходе воздуходувки — определяется максимально возможной глубиной стоков бассейна аэрации, точнее глубиной расположения аэраторов, а также потерями давления при прохождении воздуха по трубопроводу и через все элементы системы, такие, как задвижки и проч.

Как правило в каждой управляемой воздуходувке имеется свой блок управления, также важно наличие общего блока управления всеми воздуходувками, обеспечивающего оптимальный режим их эксплуатации. Управление в большинстве случаев осуществляется по давлению на выходе блока воздуходувок.

Управляемые воздушные клапаны

Если в системе одна воздуходувка (или блок воздуходувок) подает воздух только в один бассейн аэрации, то можно работать без воздушных клапанов. Но, как правило, на станциях аэрации блок воздуходувок подает воздух для нескольких аэротенков. В этом случае необходимы воздушные клапаны на входе в каждый аэротенк для регулирования распределения воздушного потока. Дополнительно клапаны могут использоваться на трубах, распределяющих подачу воздуха в разные зоны одного аэротенка. Ранее для названных целей использовались поворотные заслонки, управляемые вручную. Однако для эффективного управления системой аэрации необходимо использовать дистанционно управляемые клапаны.

К важным характеристикам управляемых клапанов относятся:

  1. Линейность характеристики управления, т.е. степень соответствие изменения положения привода клапана (актуатора) изменению воздушного потока через клапан во всем диапазоне управления.
  2. Погрешность и повторяемость отработки приводом клапана заданной уставки по воздушному потоку. Определяется качеством клапана (линейностью характеристики управления), привода и системы управления приводом.
  3. Падение давление на клапане в рабочем диапазоне раскрытия.

Падение давления на поворотных заслонках при частичном открытии может быть весьма значительным и достигать 160-190 мбар, что приводит к большим дополнительным энергозатратам.

Если в системе используются даже самые высококачественные, но универсальные клапаны (предназначенные как для воды, так и для воздуха), то падение давление на таких клапанах в рабочем диапазоне раскрытия (40-70%) обычно составляет 60-90 мбар. Простая замена такого клапана на специализированный воздушный клапан VACOMASS elliptic приведет к дополнительной экономии не менее, чем 10% электроэнергии! Это обусловлено тем, что падение давления на VACOMASS elliptic во всем рабочем диапазоне не превышает 10-12 мбар. Еще большего эффекта можно добиться при использовании клапанов VACOMASS jet для которых падение давления в рабочем диапазоне не превышает 5-6 мбар.

Управляемые специализированные воздушные клапана

VACOMASS фирмы Binder GmbH , Германия.

Часто в месте установки управляемого клапана делают сужение трубопровода для применения клапана оптимального типоразмера. Так как сужение и расширение выполняется в виде трубы Вентури, это не приводит к сколь-нибудь существенному дополнительному перепаду давления на участке с клапаном. В тоже время клапан меньшего диаметра работает в оптимальном диапазоне открытия, что обеспечивает линейность управления и минимизацию перепада давления на самом клапане.

Датчики растворенного кислорода и система управления клапанами

БА1 – бассейн аэрации 1; БА2 – бассейн аэрации 2;

ПЛК – программно-логический контроллер;

БВ – блок воздуходувок;

F – расходомер воздуха; Р – датчик давления;

О2 – датчик растворенного кислорода

М – привод (актуатор) воздушного клапана

СУЗ – система управления задвижкой (клапаном)

СУВ – система управления воздуходувками

На рисунке представлена наиболее распространенная схема управления процессом подачи воздуха для нескольких бассейнов аэрации. Качество очистки стока в аэротенках определяется наличием нужного количества растворенного кислорода. Поэтому за основную контролируемую величину, как правило, принимают концентрацию растворенного кислорода [мг/литр]. Один или несколько датчиков растворенного кислорода устанавливают в каждый аэротенк. В системе управления задается уставка (установленное среднее значение) концентрации кислорода, с таким расчетом, чтобы минимальная фактическая концентрация кислорода, гарантированно обеспечивала низкую концентрацию вредных веществ (например, аммония) в стоках на выходе из системы аэрации — в пределах ПДК. Если поступающий объем стоков в тот или иной аэротенк уменьшается (либо уменьшается его БПК и ХПК), то уменьшается и потребность в кислороде. Соответственно, количество растворенного кислорода в аэротенке становится выше уставки и, по сигналу от датчика кислорода, система управления задвижками (СУЗ) уменьшает раскрытие соответствующего воздушного клапана, что приводит к уменьшению подачи воздуха в аэротенк. Одновременно это приводит к увеличению давления Р на выходе блока воздуходувок. Сигнал от датчика давления поступает на систему управления воздуходувками (СУВ), которая уменьшает подачу воздуха. В результате энергопотребление воздуходувок снижается.

Необходимо отметить, что для решения задачи энергосбережения очень важна хорошо продуманная оптимальная уставка заданной минимальной концентрации растворенного кислорода в СУЗ.

Не менее важна правильная и обоснованная уставка заданного давления Р на выходе блока воздуходувок.

Расходомеры воздуха

Основная задача расходомеров воздуха в системе аэрации с точки зрения энергосбережения – это стабилизация процесса подачи воздуха, что позволяет понизить уставку концентрации растворенного кислорода для системы управления.

Система подачи воздуха от блока воздуходувок в несколько аэротенков является достаточно сложной, с точки зрения управления. В ней, как во всякой пневматической системе, присутствуют взаимовлияние и запаздывание при отработке управляющих воздействий и сигналов от датчиков обратной связи. Поэтому фактическая концентрация растворенного кислорода постоянно колеблется возле заданного значения (уставки). Наличие расходомеров воздуха и общей системы управления всеми клапанами позволяет существенно снизить время реакции системы и уменьшить колебания. Что, в свою очередь, позволяет понизить уставку, без опасения превысить ПДК аммония и других вредных веществ в стоках на выходе КОС. Из опыта компании Binder GmbH введение в систему управления данных от расходомеров позволяет получить дополнительную экономию электроэнергии порядка 10%.

Кроме того, если на КОС идет процесс поэтапной реконструкции системы аэрации, при котором сначала устанавливают аэраторы, клапаны, систему управления клапанами и расходомеры воздуха при сохранении старой воздуходувки, а затем переходят к выбору новых управляемых воздуходувок, то данные по фактическому расходу воздуха помогут произвести оптимальный выбор воздуходувок, что приводит к существенной экономии при их закупке и эксплуатации.

Отличительной особенностью расходомеров VACOMASS фирмы Binder GmbH является их возможность работать на коротких прямых участках «до» и «после» за счет специальных технологических решений, а также устанавливаться непосредственно в блоке клапанов VACOMASS.

Датчик аммония

Датчик концентрации аммония может устанавливаться в канале на выходе стоков из системы аэротенков для контроля качества очистки. Кроме того, введение показаний от датчика аммония в систему управления позволяет дополнительно стабилизировать систему и получить дополнительную экономию электроэнергии за счет дальнейшего снижения уставки концентрации растворенного кислорода.

Пример организации системы управления подачей воздуха в аэротенки с обратной связью по датчику растворенного кислорода (DO) и аммония (NH4).

Аэрация - это процесс принудительного насыщения воды воздухом, или кислородом. Для обеспечения этого процесса используются низконапорный компрессор или воздуходувки для аэрации, а его целью является:

  • Окисление соединений железа(обезжелезивание воды) и марганца , которое заключается в окислении соединений железа и марганца кислородом. В результате эти соединения выпадают осадком в виде хлопьев, который задерживается специальным засыпным осадочным фильтром.
  • Удаление растворенных газов, в том числе и токсичных, например, сероводорода и метана.
  • Обеззараживание воды в результате разрушения органических веществ, содержащихся в ней, под действием кислорода.
  • Удаление биозагрязнений: при насыщении воды кислородом растет численность полезных аэробных бактерий, которые перерабатывают биомассу в двуокись углерода и метан - биогаз. Сейчас процесс биоочистки применяется на всех крупных очистных сооружениях в России. Образовавшийся биогаз также можно откачивать из цистерн очистных сооружений при помощи воздуходувок для дальнейшего использования, например, для производства электроэнергии или топлива для транспорта. Однако в России это практика пока не распространена.
  • Поддержание экосистемы пруда за счет насыщения воды кислородом. В стоячей воде под действием солнечных лучей начинают активно размножаться анаэробные бактерии. В результате чего водоем превращается в мутное болото с неприятным запахом. Также из-за недостаточной концентрации в воде кислорода происходит мор рыбы и других полезных организмов.

Выделяют 2 основных типа насыщения жидкости кислородом: напорный и безнапорный.

Напорная аэрация

Воздуходувка или компрессор подает сжатый воздух через трубу, которая доходит приблизительно до половины высоты аэрационной колонны, или окислительного бака. Поток пузырьков воздуха окисляет растворенные в воде посторонние вещества, а также удаляет растворенные в воде газы (сероводород, метан, углекислый газ и прочие). Эти газы удаляются через воздушный клапан, расположенный наверху колонны.

Из колонны вода поступает в засыпной фильтр, где нейтрализуются примеси, окисленный воздухом.

В результате исчезает неприятный вкус и запах воды.

Рис. 1. Система напорной аэрации (аэрационная колонна).

Преимущества:

  • Компактный размер установки.
  • Нет необходимости в насосной установке для подачи воды потребителю.
  • Эффективное удаление растворенных в воде газов.

Безнапорная, или открытая, аэрация

Для безнапорной аэрации используется окислительный бак с системой разрыва струи. Уровень воды в емкости регулируется датчиком уровня, который подает сигнал на электромагнитный клапан. Этот клапан закрывает, или открывает, трубу, через которую вода подается в емкость.

Воздух в толщу воды подается компрессором низкого давления или воздуходувкой через трубу, заканчивающуюся мелкопузырчатым аэратором. Проходя через него, воздух образует множество мелких пузырьков, которые насыщают воду кислородом, окисляют примеси железа и марганца.

Окислы, как и в предыдущем случае, удаляются в фильтре, в который вода подается насосной установкой из окислительной емкости.

Рис. 2. Система безнапорной аэрации

Преимущества:

  • За счет продолжительного взаимодействия воды с потоком воздуха в баке окисляется больше загрязнений.
  • Позволяет создать запас воды на случай ее отключения, что особенно актуально для частных домов, где возможны перебои водоснабжения.
  • Подходит для домов с низким давлением воды.

Основной недостаток - процесс занимает много времени.

Воздуходувки для аэрации воды: требования и цена

Воздуходувка должна иметь сочетание следующих свойств, чтобы аэрация была эффективной:

  • обеспечивать высокую производительность при небольшом перепаде давления;
  • не загрязнять подаваемый воздух масляным паром;
  • длительное время работать без остановки;
  • воздуходувка для аэрации должна потреблять как можно меньше энергии, так как иначе цена процесса будет очень высока.

Всем этим требованиям наилучшим образом соответствуют вихревые воздуходувки для аэрации - машины динамического действия, которые способны обеспечивать чистый поток воздуха без пульсаций давления с производительностью до 2200 м3/ч и избыточное давление до 1040 мБар. Также они могут называть вихревыми вентиляторами, или вихревыми вакуумными насосами, благодаря своей многофункциональности.

Если нужно аэрировать большие объемы, например, водоемы для промышленного разведения рыбы, или крупные очистные станции, то могут понадобиться нагнетатели большей производительности. Эту нишу занимают роторные воздуходувки для аэрации типа Рутс, которые создают поток воздуха до 9771 м 3 /ч.

Для систем малого объема, например, аэрационных колонн, вместо вихревой газодувки можно использовать сухой пластинчато-роторный компрессор для аэрации воды, например Becker или VARP Rigel . Их производительность ограничена 500 м 3 /ч, зато избыточное давление составляет до 2200 мБар.

Воздуходувка для аэрации воды выбирается, исходя из требований технологического процесса, но если цена критична, то в первую очередь обратите внимание на вихревые газодувки VARP Alpha . В целом, самая доступная цена у вихревых нагнетателей, далее идут пластинчато роторные, а самим дорогими, но и самыми мощными, являются ротационные воздуходувки.

Воздуходувки для аэрации вихревые

Вихревые воздуходувки, аэрация для которых является одним из основных применений, представлены широким типоразмерным рядом и имеют большой ценовой диапазон, что позволяет выбрать наиболее эффективную машину именно для вашей задачи.

Воздуходувки для аэрации воды, которые можно купить в нашем каталоге, представлены следующими марками.

VARP

Это новый бренд на Российском рынке, который представлен широким модельным рядом вихревых нагнетателей, соответствующих всем современным требованиям к машинам данного типа. Основные достоинства газодувок VARP:

  • демократичная цена при высоком качестве изготовления и сборки;
  • долговечность, благодаря использованию оригинальных подшипников SKF и NSK ресурс более 20 тыс. ч. непрерывной работы;
  • высокая надежность обеспечивается использованием высокопрочного алюминиевого сплава и простой конструкцией;
  • отличные рабочие характеристики, благодаря современным методам проектирования.

Если вам нужна стандартная воздуходувка для аэрирования воды, например, пруда, то обратите внимание на серию Alpha . Они могут обеспечивать большой поток воздуха при небольшом перепаде давления. Их производительность составляет до 2050 м3/ч, а избыточное давление до 670 мБар.

Для глубоких водоемов или емкостей небольшой площади лучше подойдет серия Beta , которая обеспечивает высокий перепад давления до 1040 мБар при небольшой производительности до 170 м 3 /ч.

Для промышленного применения, например очистных сооружений, или крупных рыбных хозяйств, нужна мощная воздуходувка для аэрации воды серии Gamma . Она обеспечивает большой поток воздуха до 750 м 3 /ч при избыточном давлении до 1020 мБар.

Busch Samos

Высокопроизводительные немецкие воздуходувки, которые часто используются для аэрации воды в больших водоемах и на очистных сооружениях. Их производительность составляет до 2640 м 3 /ч, а перепад давления в компрессорном режиме до 500 мБар.

Преимущества нагнетателей Busch:

  • Используются энергосберегающие двигатели, что позволяет снизить потребляемую мощность. Это особенно актуально для промышленных очистных сооружений, так как аэрация требует больших энергозатрат.
  • Качество немецкого оборудования при невысокой стоимости, так как фирма Busch установила специальные цены для России.
  • Могут длительно работать без остановки и не нуждаются в техническом обслуживании.
  • Простой монтаж в горизонтальном или вертикальном положении.

SEKO BL

Нагнетатели SEKO эконом класса соответствуют современным требованиям, предъявляемым к вихревым нагнетателям. Доступная цена сочетается с надежностью и высоким качеством устройства. Они также могут аэрировать водоемы, обеспечивая большой воздушный поток с производительностью до 1110 м 3 /ч при перепаде давления до 650 мБар, и имеют ряд достоинств:

  • Оснащены двухполюсными электродвигателями, которые позволяют длительное время работать без перерыва.
  • Широкий модельный ряд позволяет подобрать воздуходувку и аэраторы с оптимальными параметрами и не переплачивать за более мощные нагнетатели, если в них нет необходимости.
  • Минимум шума и вибраций, благодаря встроенным глушителям и отсутствию дисбаланса.

FPZ SCL

Итальянские высоконапорные нагнетатели FPZ SCL создают максимальный перепад давления 650 мБар и представлены моделями с производительностью до 1022 м 3 /ч и мощностью до 22 кВт. Эта воздуходувка отлично подходит как для аэрации небольших прудов для рыбы, так и для крупных очистных сооружений.

Основные преимущества:

  • Используются только оригинальные подшипники SKF и NSK, которые обеспечивают не менее 25 тыс. ч. непрерывной работы.
  • Низкое энергопотребление, благодаря использованию итальянских электродвигателей Bonora Motori высокой эффективности.
  • Еще большую экономию энергию обеспечивает частотное регулирование до 70 Гц, которое позволяет точно настроить производительность в соответствии с заданными параметрами.
  • Длительная работа возможно, благодаря встроенной защите двигателя от перегрева.

Becker SV

Еще одна марка вихревых газодувок, которые производят и собирают в Германии. Они создают перепад давления до 865 мБар и обеспечивают непрерывный поток воздуха с производительностью до 1050 м 3 /ч и мощностью до 15 кВт.

Воздуходувки Becker применяются для аэрации - для очистки и насыщения кислородом воды в прудах для разведения рыбы и емкостях очистных сооружений, и хотя цена их выше, чем, например, у VARP или SEKO, они завоевали отличную репутацию и очень популярны в России.

Достоинства:

  • Экономное потребление энергии, что наиболее важно для высокопроизводительных машин.
  • Полностью безмасляные, благодаря использованию несмазываемых подшипников.
  • Производители гарантируют высокий ресурс - не менее трех лет непрерывной работы.
  • Использование встроенной системы регулирования частоты вращения ротора повышает КПД, позволяет увеличить срок эксплуатации и позволяет отрегулировать производительность до оптимального значения каждой конкретной задачи.

Воздуходувки ротационные для аэрации

Вихревая воздуходувка не единственный нагнетатель, подходящий для аэрации воды, - для аэротенка большого объема имеет смысл купить высокопроизводительную газодувку Рутса.

В нашем каталоге представлены 2 варианта роторных воздуходувок:

  • VARP Altair обеспечивают поток газа с производительностью до 7548 м 3 /ч и избыточным давлением до 980 мБар.
  • LUTOS DT работают с производительностью до 9771 м 3 /ч и создает перепад давления до 1000 мБар.

Эти машины выигрывают в производительности у вихревых, однако стоят дороже. Они обладают всеми свойствами, предъявляемыми к устройствам аэрационных установок очистных сооружений:

  1. Экологичность: не загрязняют нагнетаемый газ масляным паром, так как проточная часть надежно изолирована от масляного картера динамическим лабиринтным уплотнением.
  2. Низкий уровень шума и вибраций.
  3. Высокий КПД.
  4. Надежность и стабильная работа.
  5. Ресурс работы не менее 100 тыс. ч.
  6. Роторы тщательно сбалансированы, что позволяет вращаться им с высокой скоростью и обеспечивать высокую производительность при небольших размерах.
  7. Может длительное время работать без перерывов.

Воздуходувки для аэрации сточных вод

Воздуходувки для аэрации представлены широким типоразмерным рядом, поэтому чтобы купить подходящую модель, следует помнить, что основная цель аэрации сточных вод - снабжение аэробных микроорганизмов, формирующих ил, необходимым количеством кислорода. А также обеспечения перемешивания, чтобы создать условия для взаимодействия бактерий с органическим веществом.

На аэрацию сточных вод приходится 50..90% от всей мощности, потребляемой канализационными очистными сооружениями. Это очень энергозатратный процесс, поэтому воздуходувки электрические для аэрации выбираются, исходя из условий оптимальной работы.

Как происходит очистки сточных вод?

Существует множество вариантов систем для очистки сточных вод. Воздуходувки используются в системах аэробной очистки, чтобы снабжать кислородом аэробные бактерии, перерабатывающие органические загрязнения. Чтобы понимать, как происходит процесс очистки, рассмотрим систему биоочистки с мембранным блоком.

Рис. 3. Система биологической очистки сточных вод с мембранным блоком

Сначала сточные воды поступают в устройство механической очистки, например, пескоуловители или специальные сетки.

После этого они поступают в усреднитель, в котором активно перемешиваются стоки с разным составом, а затем жидкостными насосами перемещаются в систему биоочистки. Эта система состоит из денитрификатора и аэротенка-нитрификатора.

В денитрификаторе установлен аноксидный режим - в воде нет растворенного кислорода, но есть химически связанный в виде нитритов и нитратов. Органические загрязнения, содержащиеся в сточных водах, окисляются активным илом (АИ) до газообразных оксидов и молекулярного азота. Чтобы ил не оседал на дне, в аноксидной зоне установлена мешалка.

Аэротенк - важная часть очистной системы, в которой и проходит процесс биологической очистки. В большинстве случаев он представляет собой одно- или многокамерный резервуар прямоугольного сечения, выполненный из бетона с гидроизоляционным покрытием, через который проходят сточные воды. Загрязненная жидкость постоянно перемешивается с активным илом (колониями полезных аэробных микроорганизмов, бактерий и простейших), а в емкость нагнетается поток воздух. Он насыщает кислородом воду, обеспечивая жизнедеятельность полезных микроорганизмов, а также поддерживает ил во взвешенном состоянии. Компрессоры или воздуходувки подают сжатый воздух сквозь толщу воды для насыщения ее кислородом через мелкопузырчатые аэраторы, которые расположены на дне аэротенков.

Компрессоры или воздуходувки подают сжатый воздух сквозь толщу воды для насыщения ее кислородом через мелкопузырчатые аэраторы, которые расположены на дне аэротенков.

Для окисления органических веществ и обеспечения нитрификации концентрация растворенного в воде кислорода должна быть порядка 2..3 г/м 3 , а концентрация АИ - порядка 4..10 г/м 3 .

В данном варианте очистной системы вместо вторичного отстойника в аэротенке-нитрификаторе установлен блок мелкопористых мембран, в котором происходит разделение чистой воды и АИ.

Отфильтрованная вода (пермеат) водонасосом подается в емкость с чистой водой, откуда перемещается в систему обеззараживания ультрафиолетом, после чего подается потребителю.

Отделенный активный ил из нитрификатора перекачивается насосом в денитрификатор. Для удаления фосфора в перемещаемый поток АИ подается раствор хлорного железа. Благодаря циркуляции АИ, поддерживается его концентрация в зоне биологической очистки.

Расчет воздуходувки для аэрации (аэротенка). Как определить производительность?

Процесс аэрации происходит аэробной зоне, поэтому фактически мы решаем задачу, как подобрать воздуходувку для аэротенка.

Вода из канализационных стоков поступает в резервуары-аэротенки, где должна насыщаться достаточным количеством кислорода для окисления органических веществ.

Следовательно, можно подобрать воздуходувку по размеру бака, зная габариты системы водоочистки, биохимическое потребление кислорода (БПК) сточных вод и их среднесуточный расход, можно определить необходимый объемный расход и давление воздуха, который будет подаваться в аэротенк.

Удельный расход воздуха, необходимого для аэрации:

q aeration =2L a /kh (м 3 воздуха/м 3 сточных вод),

h , м - рабочая глубина аэротенка - глубина, на которую погружается аэратор;

L a , кг/м 3 - БПК сточных вод, которые подаются в аэротенк (0,002..0,003 кг/м 3 для рассмотренной выше системы);

k , кг/м 4 - коэффициент использования воздуха, который зависит от соотношения площадей аэраторов и аэротенка и от соотношения между глубиной и шириной аэротенка. Например, при нагнетании воздуха через трубы с перфорацией он составляет всего 0,006 кг/м 4 , а при использовании более эффективной системы пористых пластин он в 2 раза больше 0,012 кг/м 4 .

Поток воздуха, который должен подавать в аэротенк нагнетатель, равен:

Q = q aeration Q w (м 3 /ч),

где Q w , м 3 /ч - среднесуточный расход сточных вод. Если этот параметр вам не известен, то в первом приближении его можно оценить, зная рабочий объем аэротенка V раб /t 1час =Q w (м 3 /ч).

Величиной потока Q и будет определяться производительность воздуходувок. Чтобы обеспечить данный поток, могут использоваться несколько воздуходувок с производительностью Q i , работающих параллельно.

Как подобрать воздуходувку для аэротенков по величине давления?

Необходимое давление определяется, исходя из глубины аэротенка:

p=p atm + Δp + Δp g (мБар),

p atm - атмосферное давление, приблизительно равное 1000 мБар;

Δp= Δp t + Δp a (мБар), где Δp t - потери давления при движении потока воздуха от нагнетательного патрубка воздуходувки к выходу из аэратора. Следует выбирать геометрию воздуховодов так, чтобы эта величина не превышала 30..35 мБар. Δp a - потери давления в аэраторах, которые зависят от конкретной модели и даются в прилагаемой технической документации, порядка 15..30 мБар);

p g =ρgh - давление слоя воды в аэротенке, где ρ - плотность жидкости, g - ускорение свободного падения.

Чаще всего глубина аэротенков от 1 до 7 м, следовательно, необходимое избыточное давление 100..800 мБар, что хорошо укладывается в диапазон давлений, создаваемый вихревыми и ротационными газодувками.

Зная величины производительности Q i и давления p , можно подобрать воздуходувки для аэрации воды по рабочей точке, используя калькулятор на странице

Air Blowers for Aeration in Wastewater Treatment

Keywords: biological treatment, air blowers, aeration

Biological treatment today is one of the most environment-friendly methods of treatment of industrial and municipal wastewater. Saturation of the treated water with oxygen is a mandatory condition for an efficient aerobic biological treatment process. This is achieved with air blowers designed for compression and delivery of air, and for creation of vacuum.

Описание:

Воздуходувки для аэрации при очистке сточных вод

Биологическая очистка в настоящее время является одним из наиболее экологичных методов водоочистки как промышленных, так и бытовых сточных вод. Для эффективного протекания процесса аэробной биологической очистки обязательным условием является насыщение очищаемых вод кислородом. Для этого используются воздуходувки, предназначенные для сжатия и нагнетания воздуха, а также для создания вакуума.

При выборе оборудования для очистных сооружений воздуходувкам уделяют особое внимание. Расход воздуха, требуемый для очистки сточных вод, зависит от потребности процесса в кислороде, необходимой эффективности удаления загрязняющих веществ, а также от используемой технологии очистки. Необходимое количество подаваемого воздуха при проведении очистки в аэротенках зависит от состава и температуры сточных вод, геометрических характеристик аэротенков, типа используемых аэраторов.

Расчетное рабочее давление, которое должны создавать воздуходувки, следует принимать исходя из глубины расположения аэраторов в аэротенках и потерь напора в воздухоподающей сети и самих аэраторах.

Диапазон требуемой производительности воздуходувки, в зависимости от заданных условий, может значительно отличаться и составлять от нескольких кубических метров воздуха до десятков тысяч. В то же время, независимо от типоразмера, воздуходувки, применяемые для аэрации сточных вод, должны соответствовать следующим требованиям.

1. Аэрация является одним из наиболее энергозатратных процессов. До 70 % энергии на очистных сооружениях расходуется системами аэрации. Соответственно, одним из важнейших требований является высокая энергоэффективность используемых воздуходувок. Согласно требованиям нормативных документов необходимо рассматривать возможность утилизации тепла сжатого воздуха для нужд станции очистки сточных вод. Рекомендуется использовать воздуходувное оборудование, позволяющее осуществлять регулирование расхода подаваемого воздуха. Это связано с суточной и сезонной неравномерностью притока сточных вод, а также с изменением как температуры сточных вод, так и температуры воздуха, поступающей к воздуходувкам. При использовании технологий биологического удаления азота и фосфора рекомендуется предусматривать гибкое либо ступенчатое управление системой подачи воздуха в аэротенки с применением средств автоматизации.

2. Воздуходувки должны оказывать минимальное воздействие на экологию окружающей среды. Класс чистоты сжатого воздуха регламентируется согласно ГОСТ Р ИСО 8573–1–2016 «Сжатый воздух. Часть 1. Загрязнения и классы чистоты», который идентичен международному стандарту ИСО 8573–1:2010* «Сжатый воздух. Часть 1. Загрязнения и классы чистоты» (ISO 8573–1:2010). В настоящее время рекомендуются к использованию безмасляные воздуходувки. Отсутствие масла благотворно влияет на поддержание жизнедеятельности бактерий и микроорганизмов при обработке осадка сточных вод, воздух которых не содержит частиц масла. Особенно неприемлемо содержание воздуха в том случае, если вода после очистки должна быть повторно использована.

3. Воздуходувка должна работать максимально бесшумно, так как повышенный уровень шума негативно влияет на персонал, занимающийся эксплуатацией оборудования очистных сооружений.

4. Воздуходувка должна быть рассчитана на условия эксплуатации, то есть быть устойчивой к коррозии, перепадам температур и воздействию атмосферных осадков.

5. Воздуходувки должны отличаться простотой в эксплуатации.

Системы аэрации, которыми оснащаются промышленные и локальные очистные сооружения, предназначены для искусственного обогащения сточных вод кислородом, окисляющим соединения железа и прочие примеси. Для этого используется специальное вакуумное оборудование, отвечающее определённым нормативам и требованиям. В частности, на очистных станциях устанавливаются воздуходувки для аэрации различной производительности, делающие процесс очистки эффективным и экологически безопасным. Компания «Мегатехника МСК» на выгодных условиях готова поставить заинтересованным предприятиям оборудование с необходимыми вам параметрами.

Основные требования, влияющие на выбор воздуходувок для аэрации воды

Естественная аэрация воды - непременное условие для размножения очищающих воду аэробных бактерий, в природе она происходит непрерывно. Однако для интенсивной, форсированной системы аэрации требуются гораздо большие объёмы воздуха, для чего применяется воздуходувка для аэрации воды роторного либо турбинного типа, отвечающая таким параметрам, как:

  • способность круглосуточно подавать сухой, не содержащий микрочастиц смазки, продуктов износа или других вредных примесей воздух;
  • максимальная бесшумность работы;
  • номинальная производительность, соответствующая объёмам перерабатываемых стоков;
  • устойчивость к коррозии, перепадам температур и воздействию атмосферных осадков;
  • простота и непритязательность в обслуживании, эксплуатации, долговечность, надёжность и энергоэффективность конструкции.

Какие бывают воздуходувки для аэрации очистных сооружений

Различают воздуходувки погружного типа, не нуждающиеся в дополнительных системах охлаждения, и центробежные, с многоступенчатым сжатием. Для небольших очистных сооружений мы рекомендуем оборудование, нагнетающие воздух в пневмосистему с помощью винтового блока. Принцип работы камеры сжатия роторных воздуходувок исключает возможность контакта масел с воздухом, а сами компрессоры отличаются особо низким уровнем шумов и вибраций, экономичностью и компактностью, что важно при размещении очистных станций вблизи жилых массивов. Для очистных комплексов крупных промышленных предприятий больше подойдут компрессоры, сжимающих воздух движением поршней.

Мы подберём для вас самое эффективное решение!

Московская компания «Мегатехника МСК» в большом ассортименте предлагает воздуходувки для аэрации очистных сооружений или искусственных водоёмов, с параметрами, уточняемыми в каждом конкретном случае. Учитывается также возможность изменения производительности оборудования, что связано с возможными сезонными колебаниями объема сточных вод, и, как следствие, разницей в потреблении сжатого воздуха. По выгодным ценам мы укомплектуем ваше предприятие винтовыми (роторными) или поршневыми воздуходувками от авторитетных производителей, пользующихся популярностью на мировом и российском рынке. Достаточно сделать заявку в режиме онлайн, и наши эксперты свяжутся с вами для уточнения деталей.

Загрузка...
Top