Линейная скорость распространения горения при различных пожарах. Значения велечин для основных горючих материалов Скорость распространения пожара таблица

пожар химический боевой управление

Скорость роста площади пожара представляет собой прирост площади пожара за промежуток времени и зависит от скорости распространения горения, формы площади пожара и эффективности ведения боевых действий. Она определяется по формуле:

где: V sn - скорость роста площади пожара, м 2 /мин; ДS n - разность между последующими и предыдущими значениями площади пожара, м 2 ; Дф - интервал времени, мин.

333 м 2 /мин

2000 м 2 /мин

2222 м 2 /мин


Рис 2.

Вывод по графику: Из графика видно, что очень большая скорость развития пожара возникала в начальный период времени, это объясняется свойствами горящего материала (ЛВЖ-ацетон). Разлившийся ацетон быстро достиг пределов помещения и пожар развитие пожара ограничилось противопожарными стенами. Снижению скорости развития пожара способствовало быстрое введение мощных водяных стволов и правильные действия персонала участка (приведен в действие аварийный слив и запущена система пожаротушения не сработавшая в автоматическом режиме, отключена приточная вентиляция).

Определение линейной скорости распространения горения

При исследовании пожаров линейная скорость распространения фронта пламени определяется во всех случаях, так как она используется для получения данных об усредненной скорости распространения горения на типичных объектах. Распространение горения от первоначального места возникновения в различных направлениях может происходить с неодинаковой скоростью. Максимальная скорость распространения горения обычно наблюдается: при движении фронта пламени в сторону проемов, через которые осуществляется газообмен; по пожарной нагрузке

Эта скорость зависит от обстановки на пожаре, интенсивности подачи огнетушащих веществ (ОТВ) и т.д.

Линейная скорость распространения горения, как при свободном развитии пожара, так и при его локализации, определяется из соотношения:

где: L - расстояние, пройденное фронтом горения в исследуемом промежутке времени, м;

ф 2 - ф 1 - промежуток времени, в котором замерялось расстояние, пройденное фронтом горения, мин.

для основных горючих материалов

Таблица 1

Линейная скорость распространения пламени по поверхности материалов

Материал

Линейная скорость распространения пламени по поверхности Х10 2 м·с -1

1. Угары текстильного производства в разрыхленном состоянии

3. Хлопок разрыхленный

4. Лен разрыхленный

5. Хлопок+капрон (3:1)

6. Древесина в штабелях при влажности, %:

7. Подвешенные ворсистые ткани

8. Текстильные изделия в закрытом складе при загрузке 100 от м -2

9. Бумага в рулонах в закрытом складе при загрузке 140 от м 2

10. Синтетический каучук в закрытом складе при загрузке свыше 230 от м 2

11. Деревянные покрытия цехов большой площади, деревянные стены, отделанные древесно-волокнистыми плитами

12. Печные ограждающие конструкции с утеплителем из заливочного ППУ

13. Соломенные и камышитовые изделия

14. Ткани (холст, байка, бязь):

по горизонтали

в вертикальном направлении

в направлении, нормальном к поверхности тканей, при расстоянии между ними 0,2 м

15. Листовой ППУ

16. Резинотехнические изделия в штабелях

17. Синтетическое покрытие “Скортон” при Т= 180°С

18. Торфоплиты в штабелях

19. Кабель ААШв1х120; АПВГЭЗх35+1х25; АВВГЗх35+1х25:

в горизонтальном тоннели сверху вниз при расстоянии между полками 0,2 м

в горизонтальном направлении

в вертикальном тоннели в горизонтальном направлении при расстоянии между рядами 0,2-0,4

Таблица 2

Средняя скорость выгорания и низшая теплота сгорания веществ и материалов

Вещества и материалы

Скорость потери массы х10 3 , кг·м -2· с -1

Низшая теплота сгорания, кДж·кг -1

Диэтиловый спирт

Дизельное топливо

Этиловый спирт

Турбинное масло (ТП-22)

Изопропиловый спирт

Изопентан

Натрий металлический

Древесина (бруски) 13,7 %

Древесина (мебель в жилых и административных зданиях 8-10%)

Бумага разрыхленная

Бумага (книги, журналы)

Книги на деревянных стеллажах

Кинопленка триацетатная

Карболитовые изделия

Каучук CKC

Каучук натуральный

Органическое стекло

Полистирол

Текстолит

Пенополиуретан

Волокно штапельное

Полиэтилен

Полипропилен

Хлопок в тюках 190 кгх м -3

Хлопок разрыхленный

Лен разрыхленный

Хлопок+капрон (3:1)

Таблица 3

Дымообразующая способность веществ и материалов

Вещество или материал

Дымообразующая способность,

Д m , Нп. м 2. кг -1

Бутиловый спирт

Бензин А-76

Этилацетат

Циклогексан

Дизельное топливо

Древесина

Древесное волокно (береза, сосна)

ДСП ГОСТ 10632-77

Фанера ГОСТ 3916-65

Древесноволокнистая плита (ДВП)

Линолеум ПВХ ТУ 21-29-76-79

Стеклопластик ТУ 6-11-10-62-81

Полиэтилен ГОСТ 16337-70

Табак «Юбилейный» 1 сорт, вл.13%

Пенопласт ПВХ-9 СТУ 14-07-41-64

Пенопласт ПС-1-200

Резина ТУ 38-5-12-06-68

Полиэтилен высокого давления ПЭВФ

Пленка ПВХ марки ПДО-15

Пленка марки ПДСО-12

Турбинное масло

Лен разрыхленный

Ткань вискозная

Атлас декоративный

Ткань мебельная полушерстяная

Полотно палаточное

Таблица 4

Удельный выход (потребление) газов при горении веществ и материалов

Вещество или материал

Удельный выход (потребление) газов,

L i , кг. кг -1

Хлопок + капрон (3:1)

Турбинное масло ТП-22

Кабели АВВГ

Кабель АПВГ

Древесина

Древесина, огнезащищенная препаратом СДФ-552

Административные здания................................................................................... 1,0 1,5

Библиотеки, книгохранилища, архивохранилища............................................. 0,5 1,0

Деревообрабатывающие предприятия:

Лесопильные цехи (здания I, II, III степени огнестойкости) .................... 1,0 3,0

То же (здания IV и V степени огнестойкости.............................................. 2,0 5,0

Сушилки............................................................................................................. 2,0 2,5

Заготовительные цехи...................................................................................... 1,0 1,5

Производства фанеры....................................................................................... 0,8 1,5

помещения других цехов...................................................................................... 0,8 1,0

Жилые дома............................................................................................................ 0,5 0,8

Коридоры и галереи............................................................................................... 4,0 5,0

Кабельные сооружения (горение кабелей) ......................................................... 0,8 1,1

Лесные массивы (скорость ветра 7 10 м/с и влажность 40%):

Рада-сосняк сфагновый...................................................................................... до 1,4

Ельник-долгомошник и зеленомошник............................................................ до 4,2

Сосняк-зеленомошник (ягодник) ..................................................................... до 14,2

Сосняк бор-беломошник................................................................................... до 18,0

растительность, лесная подстилка, подрост,

древостой при верховых пожарах и скорости ветра, м/с:

8 9 ........................................................................................................................ до 42

10 12 .................................................................................................................... до 83

то же по кромке на флангах и в тылу при скорости ветра, м/с:

8 9 .......................................................................................................................... 4 7

Музеи и выставки.................................................................................................. 1,0 1,5

Объекты транспорта:

Гаражи, трамвайные и троллейбусные депо................................................. 0,5 1,0


Ремонтные залы ангаров................................................................................. 1,0 1,5

Морские и речные суда:

Сгораемая надстройка при внутреннем пожаре............................................ 1,2 2,7

То же при наружном пожаре........................................................................... 2,0 6,0

Внутренние пожары надстройки при наличии

синтетической отделки и открытых проемов..................................................... 1,0 2,0

Пенополиуретан

Предприятия текстильной промышленности:

Помещения текстильного производства........................................................ 0,5 1,0

Тоже при наличии на конструкциях слоя пыли............................................ 1,0 2,0

волокнистые материалы во взрыхленном состоянии........................................ 7,0 8,0

Сгораемые покрытия больших площадей (включая пустотные) ..................... 1,7 3,2

Сгораемые конструкции крыш и чердаков......................................................... 1,5 2,0

Торфа в штабелях................................................................................................. 0,8 1,0

Льноволокна.......................................................................................................... 3,0 5,6

Текстильных изделий........................................................................................... 0,3 0,4

Бумаги в рулонах................................................................................................. 0,3 0,4

Резино-технических изделий (в здании)....................................................... 0,4 1,0

Резино-технических изделий (в штабелях на

открытой площадке) ............................................................................................. 1,0 1,2

Каучука.............................................................................................................. 0,6 1,0

Лесопиломатериалов:

Круглого леса в штабелях................................................................................ 0,4 1,0

пиломатериалов (досок) в штабелях при влажности, %:

До 16 .......................................................................................................................... 4,0

16 18 ........................................................................................................................ 2,3

18 20 ........................................................................................................................ 1,6

20 30 ........................................................................................................................ 1,2

Более 30 ..................................................................................................................... 1,0

куч балансовой древесины при влажности, %:

До 40 .................................................................................................................. 0,6 1,0

более 40 ................................................................................................................. 0,15 02

Сушильные отделения кожзаводов...................................................................... 1,5 2,2

Сельские населенные пункты:

Жилая зона при плотной застройке зданиями V степени

огнестойкости, сухой погоде и сильном ветре.................................................... 20 25

Соломенные крыши зданий............................................................................. 2,0 4,0

Подстилка в животноводческих помещениях............................................... 1,5 4,0

Степные пожары при высоком и густом травянистом

покрове, а также зерновые культуры при сухой погоде

и сильном ветре................................................................................................... 400 600

Степные пожары при низкой редкой растительности

и тихой погоде.......................................................................................................... 15 18

Театры и дворцы культуры (сцена) ..................................................................... 1,0 3,0

Торговые предприятия, склады и базы

товароматериальных ценностей........................................................................... 0,5 1,2

Типографии............................................................................................................. 0,5 0,8

Фрезерный торф (на полях добычи) при скорости ветра, м/с:

10 14 ................................................................................................................. 8,0 10

18 20 .................................................................................................................. 18 20

Холодильники........................................................................................................ 0,5 0,7

Школы, лечебные учреждения:

Здания I и II степени огнестойкости.............................................................. 0,6 1,0

Здания III и IV степени огнестойкости......................................................... 2,0 3,0


Приложение 8

(Справочное)

Интенсивность подачи воды при тушении пожаров, л/м 2 с.

Административные здания:

V – степени огнестойкости.......................................................................... 0,15

подвальные помещения................................................................................ 0,1

чердачные помещения.................................................. 0,1

Ангары, гаражи, мастерские, трамвайные

и троллейбусные депо................................................................................... 0,2

Больницы; ...................................................................................................... 0,1

Жилые дома и подсобные постройки:

I – III степени огнестойкости....................................................................... 0,06

IV – степени огнестойкости......................................................................... 0,1

V – степени огнестойкости........................................................................... 0,15

подвальные помещения................................................................................. 0,15

чердачные помещения; ................................................................................. 0,15

Животноводческие здания:

I – III степени огнестойкости....................................................................... 0,1

IV – степени огнестойкости......................................................................... 0,15

V – степени огнестойкости........................................................................... 0,2

Культурно-зрелищные учреждения (театры,

кинотеатры, клубы, дворцы культуры):

· Сцена......................................................................................................... 0,2

· зрительный зал......................................................................................... 0,15

· подсобные помещения............................................................................. 0,15

Мельницы и элеваторы................................................................................. 0,14

Производственные здания:

I – II степени огнестойкости.................................................................. 0,15

III – степени огнестойкости................................................................... 0,2

IV – V степени огнестойкости............................................................... 0,25

окрасочные цеха............................................................................................ 0,2

Подвальные помещения........................................................................... 0,3

Чердачные помещения............................................................................. 0,15

· сгораемые покрытия больших площадей:

При тушении снизу внутри здания......................................................... 0,15

При тушении снаружи со стороны покрытия....................................... 0,08

При тушении снаружи при развившемся пожаре................................. 0,15

Строящиеся здания0,1

Торговые предприятия и склады

товароматериальных ценностей................................................................... 0,2

Холодильники................................................................................................ 0,1

Электростанции и подстанции:

· кабельные тунели и полуэтажи

(подача тонкораспыленной воды) ............................................................... 0,2

· машинные залы и котельные отделения................................................ 0,2

· галереи топливоподачи........................................................................... 0,1

· трансформаторы, реакторы, масляные

выключатели (подача тонкораспыленной воды)........................................ 0,1


Административные здания 1,0 ÷ 1,5

Библиотеки, книгохранилища, архивохранилища 0,5 ÷ 1,0

Деревообрабатывающие предприятия:

Лесопильные цехи (здания I, II, III степени огнестойкости) 1,0 ÷ 3,0

То же (здания IV и V степени огнестойкости 2,0 ÷ 5,0

Сушилки 2,0 ÷ 2,5

Заготовительные цехи 1,0 ÷ 1,5

Производства фанеры 0,8 ÷ 1,5

помещения других цехов 0,8 ÷ 1,0

Жилые дома 0,5 ÷ 0,8

Коридоры и галереи 4,0 ÷ 5,0

Кабельные сооружения (горение кабелей). 0,8 ÷ 1,1

Лесные массивы (скорость ветра 7+ 10 м/с и влажность 40%):

Рада-сосняк сфагновый до 1,4

Ельник-долгомошник и зеленомошник до 4,2

Сосняк-зеленомошник (ягодник) до 14,2

Сосняк бор-беломошник до 18,0

растительность, лесная подстилка, подрост,

древостой при верховых пожарах и скорости ветра, м/с:

8 ÷ 9 до 42

10 ÷ 12 до 83

то же по кромке на флангах и в тылу при скорости ветра, м/с:

10 ÷ 12 8 ÷ 14

Музеи и выставки 1,0 ÷ 1,5

Объекты транспорта:

Гаражи, трамвайные и троллейбусные депо 0,5 ÷ 1,0

Ремонтные залы ангаров 1,0 ÷ 1,5

Морские и речные суда:

Сгораемая надстройка при внутреннем пожаре 1,2 ÷ 2,7

То же при наружном пожаре 2,0 ÷ 6,0

Внутренние пожары надстройки при наличии

синтетической отделки и открытых проемов 1,0 ÷ 2.0

Пенополиуретан

Предприятия текстильной промышленности:

помещения текстильного производства 0,5 ÷ 1,0

Тоже при наличии на конструкциях слоя пыли 1,0 ÷ 2,0

волокнистые материалы во взрыхленном состоянии 7,0 ÷ 8,0

Сгораемые покрытия больших площадей (включая пустотные) 1,7 ÷ 3,2

Сгораемые конструкции крыш и чердаков 1,5 ÷ 2,0

Торфа в штабелях 0,8 ÷ 1,0

Льноволокна 3,0 ÷ 5,6

- текстильных изделий 0,3 ÷ 0.4
- бумаги в рулонах 0,3 ÷ 0.4
- резино-технических изделий (в здании) 0,4 ÷ 1,0
- резино-технических изделий (в штабелях на
открытой площадке) 1,0 ÷ 1,2
- каучука 0,6 ÷ 1,0
- лесопиломатериалов:
- круглого леса в штабелях 0,4 ÷ 1.0
пиломатериалов (досок) в штабелях при влажности, %:
- до 16 4,0
16 ÷ 18 2,3
- 18 ÷ 20 1.6
- 20 ÷ 30 1,2
- более 30 1.0
куч балансовой древесины при влажности, %:
- до 40 0,6 ÷1,0
более 40 0,15 ÷ 02
Сушильные отделения кожзаводов 1,5 ÷ 2,2
Сельские населенные пункты:
- жилая зона при плотной застройке зданиям и V степени
огнестойкости, сухой погоде и сильном ветре 20 ÷ 25
- соломенные крыши здании 2.0 ÷ 4,0
- подстилка в животноводческих помещениях 1,5 ÷ 4,0
- степные пожары при высоком и густом травянистом
покрове, а также зерновые культуры при сухой погоде
и сильном ветре 400 ÷ 600
- степные пожары при низкой редкой растительности
и тихой погоде 15 ÷ 18
Театры и дворцы культуры (сцена) 1,0 ÷ 3.0
Торговые предприятия, склады и базы
товароматериальных ценностей 0,5 ÷ 1,2
Типографии 0,5 ÷ 0,8
Фрезерный торф (на полях добычи) при скорости ветра, м/с:
10 ÷ 14 8,0 ÷ 10
18 ÷ 20 18 ÷ 20
Холодильники 0,5 ÷ 0,7
Школы, лечебные учреждения:
- здания I и II степени огнестойкости 0,6 ÷ 1,0
- здания III и IV степени огнестойкости 2,0 ÷ 3,0

Приложение №6

Интенсивность подачи воды при тушении пожаров

Административные здания:



IV степени огнестойкости 0,1

V степени огнестойкости 0,15

подвальные помещения 0,1

чердачные помещения 0,1

Ангары, гаражи, мастерские, трамвайные

и троллейбусные депо 0,2

Больницы; 0,1

Жилые дома и подсобные постройки:

I - III степени огнестойкости 0,06

IV степени огнестойкости 0,1

V степени огнестойкости 0,15

подвальные помещения 0,15

чердачные помещения; 0,15

Животноводческие здания:

I - III степени огнестойкости 0,1

IV степени огнестойкости 0,15

V степени огнестойкости 0,2

Кулмурно-зрелищные учреждения (театры, кинотеатры, клубы, дворцы культуры):

Сцена 0,2

Зрительный зал 0,15

Подсобные помещения 0,15

Мельницы и элеваторы 0,14

Производственные здания:

I - II степени огнестойкости 0,15

III степени огнестойкости 0,2

IV - V степени огнестойкости 0,25

Окрасочные цеха 0,2

Подвальные помещения 0,3

Чердачные помещения 0,15

Сгораемые покрытия больших площадей:

При тушении снизу внутри здания 0,15

При тушении снаружи со стороны покрытия 0,08

При тушении снаружи при развившемся пожаре 0,15

Строящиеся здания 0,1

Торговые предприятия и склады

товароматериальных ценностей 0,2

Холодильники 0,1

Электростанции и подстанции:

Кабельные тунели и полуэтажи

(подача тонкораспыленной воды) 0,2

Машинные залы и котельные отделения 0,2

Галереи топливоподачи 0,1

Трансформаторы, реакторы, масляные

выключатели (подача тонкораспыленной воды) 0,1

2. ТРАНСПОРТНЫЕ СРЕДСТВА

Автомобили, трамваи, троллейбусы

на открытых местах стоянок 0,1

Самолеты и вертолеты:

Внутренняя отделка (при подаче тонкораспыленной воды) 0,08

Конструкции с наличием магниевых сплавов 0,25

Корпус 0,15

Суда (сухогрузные и пассажирские):

Надстройки (пожары внутренние и наружные)

при подаче цельных и тонкораспыленных струй 0,2

Трюмы 0,2

Бумага разрыхленная 0,3

3. ТВЕРДЫЕ МАТЕРИАЛЫ.

Древесина:

Балансовая, при влажности %:

Менее 40 0,5

Пиломатериалы в штабелях в пределах одной группы,

при влажности %:

Свыше 30 0,2

Круглый лес в штабелях, в пределах одной группы 0,35

Щепа в кучах с влажностью 30-50% 0,1

Каучук (натуральный или искусственный),

резина и резино-технические изделия............. 0,3

Льнокостра в отвалах (подача тонкораспыленной воды) 0,2

Льнотреста (скирды, тюки) 0,25

Пластмассы:

Термопласты 0,14

Реактопласты 0,1

Полимерные материалы и изделия из них 0,2

Текстолит, карболит, отходы пластмасс,

триацетатная пленка 0,3

Торф на фрезерных полях влажностью 15-30%

(при удельном расходе воды 110-140 л/м.кв

и времени тушения 20 мин) 0,1

Торф фрезерный в штабелях (при удельном расходе воды

235 д/м.кв, и времени тушения 20 мин.)......... 0,2

Хлопок и другие волокнистые материалы:

Открытые склады 0,2

Закрытые склады 0,3

Целлулоид и изделия из него 0,4

Ядохимикаты и удобрения 0,2

5. ЛЕГКОВОСПЛАМЕНЯЮЩИЕСЯ

И ГОРЮЧИЕ ЖИДКОСТИ

(при тушении тонко рас пыле иной водой)

Ацетон 0,4

Нефтепродукты в емкостях:

С температурой вспышки ниже 28 гр.С....... 0,4

С температурой вспышки от 28 до 60 гр.С 0,3

С температурой вспышки более 60 гр.С...... 0,2

Горючая жидкость, разлившаяся на поверхности

площадки, в траншеях и технологических лотках 0,2

Термоизоляция, пропитанная нефтепродуктами 0,2

Спирты (этиловый, метиловый, пропидовый, бутиловый

и другие) на складах и спиртозаводах 0,2

Нефть и конденсат вокруг скважины фонтана 0,4

Примечания:

1. При подаче воды со смачивателем интенсивность подачи по таблице снижается в 2 раза.

2. Тушение хлопка, других волокнистых материалов и торфа необходимо производить только с добавлением смачивателя.


Приложение №7

Организация тушения возможного пожара первым РТП.


Приложение № 8

Ориентировочный запас огнетушащих средств, учитываемый при расчете сил и средств для тушения пожара.

Большинство пожаров:

вода на период тушения 5

вода на период дотушивания (разборка,

проливка мест горения и т.д.), час 3

Пожары, для объемного тушения которых

применяются негорючие газы и пары 2

Пожары на судах:

пенообразователь для тушения пожаров

МКО, трюмах и надстройках 3

Пожары нефти и нефтепродуктов в резервуарах:

Пенообразователь 3

вода для тушения пожара пеной 5

вода на охлаждение наземных резервуаров:

передвижными средствами, час 6

стационарным и средствами, час 3

вода на охлаждение подземных резервуаров, час 3

Примечание: Запас воды в водоемах (резервуарах) при тушении пожаров газовых и нефтяных фонтанов должен обеспечивать бесперебойную работу пожарных подразделений в течении дневного времени. При этом учитывается пополнение воды в течение суток насосными установками. Как показывает практика тушения пожаров, общий объем водоемов обычно составляет 2,5-5,0 тыс.м 3 .


Приложение №9

Величины сопротивления одного напорного рукава длиной 20 м.

Тип рукава Диаметр рукава, мм
Прорезиненные 0,15 0,035 0,015 0,004 0,002 0,00046
Непрорезиненные 0,3 0,077 0,03 - _ -

Приложение №10

Водоотдача водопроводных сетей (ориентировочно).

Напор в сети, м Вид водопроводной сети Диаметр труб, мм
Напор воды, л/с
Тупиковая
Кольцевая
Тупиковая
Кольцевая
Тупиковая
Кольцевая
Тупиковая
Кольцевая
Тупиковая
Кольцевая

Приложение №11

Выполняемые работы на пожаре Требуемое количество человек
Работа со стволом «РС -50» на ровной плоскости (с земли, пола и т.д.)
Работа со стволом «РС-50» на крыше здания
Работа со стволом «РС -70» 2-3
Работа со стволом «РС-50» или «РС-70» в атмосфере, непригодной для дыхания 3-4 (звено ГДЗС)
Работа с переносным лафетным стволом 3-4
Работа с воздушно-пенным стволом и генератором ГПС -600
Работа с генератором ГНС -2000 3-4
Работа с пеносливом 2-3
Установка пенопоъемника 5-6 (отделение)
Установка выдвижной переносной пожарной лестницы
Страховка выдвижной переносной пожарной лестницы после ее установки
Разведка в задымленном помещении 3 (звено ГДЗС)
Разведка в больших подвалах, туннелях, метро, бесфонарных зданиях и т.п. 6 (два звена ГДЗС)
Спасание пострадавших из задымленного помещения и тяжелобольных (одного пострадавшего)
Спасание людей по пожарным лестницам и с помощью веревки (на участок спасания) 4-5
Работа на разветвлении и контроль за рукавной системой: при прокладке рукавных линий в одном направлении (из расчета на одну машину) при прокладке двух рукавных линий в противоположных направлениях (из расчета на одну машину)
Вскрытие и разборка конструкций: выполнение действий на позиции ствола, работающего по тушению пожара (кроме ствольщика) выполнение действий на позиции ствола, работающего по защите (кроме ствольщика) работа по вскрытию покрытия большой площади (из расчета на один ствол, работающий на покрытии) работа по вскрытию 1 м: дощатого шпунтового или паркетного щитового поля дощатого гвоздевого или паркетного штучного пола оштукатуренной деревянной перегородки или подшивки потолка металлической кровли рулонной кровли по деревянной опалубке утепленного сгораемого покрытия не менее 2 1-2 3-4
Перекачка воды: контроль за поступлением воды в автоцистерну (на каждую машину) контроль за работой рукавной системы (на 100 м линии перекачки)
Подвоз воды: сопровождающий на машине работа на пункте заправки

Приложение № 12

КАРТОЧКА

Боевых действий ___________ караула ВПЧ (ППЧ) №_____________

на пожаре, происшедшем

__________________________________________________________

(число, месяц, год)

(составляется на все пожары)

1. Объект __________________________________________________

(наименование объекта, ведомственная принадлежность - министерство, ведомство, адрес)

2. Вид здания и его размеры ___________________________________

(этажность, огнестойкость и размеры здания в плане)

3. Что и где горело __________________________________________

(этаж, помещение, вид, количество веществ, материалов, оборудования)

4. Время: возникновения пожара _________, обнаружения __________

сообщения о пожаре _____, выезда дежурного караула _____, прибытия

на пожар _____, подачи первых стволов _____, вызова дополнительной

помощи ______, локализации _______, ликвидации _____, возвращения

в часть __________.

5. Состав выезжавших подразделений ___________________________

(вид автомобилей и численность боевых расчетов)

6. Особенности и обстоятельства развития пожара _________________

7. Результат пожара __________________________________________

(сгорело материалов, веществ, оборудования и убыток от пожара)

8. Характерные особенности тактических действий на пожаре _______

___________________________________________________________

___________________________________________________________

9. Оценка работы караула _____________________________________

(положительные стороны, недостатки в работе личного состава, отделений и РТП)

___________________________________________________________

10. Дополнительные замечания (но работе техники, тыла) ____________

11. Предложения и принятые меры _______________________________

12. Отметка о разборе пожара и о дополнительных данных, полученных при разборе пожара ________________________________________


Приложение № 13

Условно-графические обозначения

Машина на гусеничном ходу Автомобиль связи и освещения пожарный Автомобиль газодымозащитной службы Станция автонасосная пожарная Автомобиль пожарный со стационарным лафетным стволом Автомобиль штабной пожарный Автомобиль газоводяного тушения
ПОЖАРНЫЕ СПЕЦИАЛЬНЫЕ МАШИНЫ ПОЖАРНО-ТЕХНИЧЕСКОЕ ВООРУЖЕНИЕ, СПЕЦИАЛЬНЫЙ ИНСТРУМЕНТ
Гидросамолет пожарный Разветвление рукавное трехходовое
Вертолет пожарный Разветвление рукавное четырехходовое
Мотопомпа пожарная переносная прицепная Катушка рукавная переносная Катушка рукавная передвижная
Прицеп пожарный порошковый Мостик рукавный
Приспособленный автомобиль для целей пожаротушения Гидроэлеватор пожарный
Другая приспособленная техника для целей пожаротушения Пеносмеситель пожарный
ПОЖАРНО-ТЕХНИЧЕСКОЕ ВООРУЖЕНИЕ СПЕЦИАЛЬНЫЙ ИНСТРУМЕНТ Колонка пожарная
Рукав пожарный напорный Ствол пожарный ручной (общее обозначение)
Рукав пожарный всасывающий - Ствол А с диаметром насадка (19,25 мм)
Водосборник рукавный Ствол для формирования тонкораспыленной водяной (водоаэрозольной) струи
Разветвление рукавное двухходовое Ствол для формирования водяной струи с добавками
Ствол для формирования пены низкой кратности (СВП-2, СВП-4, СВПЭ-4, СВПЭ-8) Дымосос пожарный: переносной прицепной
Ствол для формирования пены средней кратности (ГПС-200, ГПС-600, ГПС-2000)
Ствол для тушения электроустановок, находящихся под напряжением Лестница - палка
Ствол «Б» На третьем этаже К – на крыше П – подвале Ч – чердаке
ГЗДС
Лестница пожарная выдвижная
УСТАНОВКА ПОЖАРОТУШЕНИЯ
Ствол пожарный лафетный переносной стационарный с водяными насадками и порошковый стационарный с пенными насадками возимый Стационарная установка пожаротушения (общая и локальная защита помещения с автоматическим пуском)
Подъемник пенослив Стационарная установка пожаротушения с ручным пуском
Подъемник пенный с гребенкой генераторов ГПС-600 Установка пенного пожаротушения
Установка водоаэрозольного пожаротушения Установка водяного пожаротушения
УСТАНОВКИ ПОЖАРОТУШЕНИЯ ПУНКТЫ УПРАВЛЕНИЯ И СРЕДСТВА СВЯЗИ
Станция пожаротушения Пост регулирования движения (регулировщик). С буквами КПП – контрольно-пропускной пункт, Р – регулировщик, ПБ – пост безопасности ГЗДС
ПБ
Р
КПП
Станция пожаротушения диоксидом углерода
Станция пожаротушения прочим газом Радиостанции: подвижная переносная стационарная
Установка газоаэрозольного пожаротушения
Установка порошкового тушения Громкоговоритель
Установка парового пожаротушения Телефон
ОГНЕТУШИТЕЛИ Прожектор
Огнетушитель переносной (ручной, ранцевый) передвижной Место расположения штаба
УСТРОЙСТВА ДЫМОУДАЛЕНИЯ Радионаправление
Устройство дымоудаления (дымовой люк) Радиосеть
Устройства дымотеплоудаления ПЕРЕДВИЖЕНИЕ ПОДРАЗДЕЛЕНИЙ, РАЗВЕДКА
Ручное управление естественной вентиляцией Разведывательный дозор. С буквами ХРД – химический разведывательный дозор Пожар внутренний с зоной теплового воздействия
Выход сил с занимаемого рубежа Пожар наружный с зоной задымления
Места нахождения пострадавших
Место возникновения пожара (очаг)
Отряд первой медицинской помощи Отдельный пожар из местности и направление его распространения
Временный пункт сбора пострадавших Огневой шторм
ОБСТАНОВКА В ЗОНЕ ВЕДЕНИЯ БОЕВЫХ ДЕЙСТВИЙ Зона пожаров и направление ее распространения
Пожар внутренний Направление развития пожара
Пожар наружный Решающее направление действия сил и средств пожаротушения
Загорающееся здание Границы участка тушения пожара Нефтебаза, склад топлива
Точка замера уровня радиации с указанием уровня радиации, времени и даты замера Полное разрушение здания (объекта, сооружения, дороги, газопровода и т.п.)
Лестничная клетка, сообщающаяся с чердаком
Ч
Одноколейная железная дорога
Печи Двухколейная железная дорога
Вентиляционная шахта Переезд под железной дорогой
Лифт
СООРУЖЕНИЯ, КОММУНИКАЦИИ, ВОДОИСТОЧНИКИ
Переезд над железной дорогой Металлическая ограда
Переезд на одном уровне со шлагбаумом Железобетонная ограда
Трамвайная линия Каменная ограда
Водопровод подземный Земляная насыпь (обвалование)
Нефтепровод Кольцевая водопроводная магистраль Тупиковая водопроводная магистраль Колодец

Расчеты сил и средств выполняют в следующих случаях:

  • при определении требуемого количества сил и средств на тушение пожара;
  • при оперативно-тактическом изучении объекта;
  • при разработке планов тушения пожаров;
  • при подготовке пожарно-тактических учений и занятий;
  • при проведении экспериментальных работ по определению эффектив­ности средств тушения;
  • в процессе исследования пожара для оценки действий РТП и подразделений.

Расчет сил и средств для тушения пожаров твердых горючих веществ и материалов водой (распространяющийся пожар)

    • характеристика объекта (геометрические размеры, характер пожарной нагрузки и ее размещение на объекте, размещение водоисточников относительно объекта);
    • время с момента возникновения пожара до сообщения о нем (зависит от наличия на объекте вида средств охраны, средств связи и сигнализации, правильности действий лиц, обнаруживших пожар и т.д.);
    • линейная скорость распространения пожара V л ;
    • силы и средства, предусмотренные расписанием выездов и время их сосредоточения;
    • интенсивность подачи огнетушащих средств I тр .

1) Определение времени развития пожара на различные моменты времени.

Выделяются следующие стадии развития пожара:

  • 1, 2 стадии свободного развития пожара, причем на 1 стадии (t до 10 мин) линейная скорость распространения принимается равной 50% ее максимального значения (табличного), характерного для данной категории объектов, а с момента времени более 10 мин она принимается равной максимальному значению;
  • 3 стадия характеризуется началом введения первых стволов на туше­ние пожара, в результате чего линейная скорость распространения пожара уменьшается, поэтому в промежутке времени с момента введения первых стволов до момента ограничения распространения пожара (момент локали­зации), ее значение принимается равным 0,5 V л . В момент выполнения условий локализации V л = 0 .
  • 4 стадия – ликвидация пожара.

t св = t обн + t сооб + t сб + t сл + t бр (мин.), где

  • t св – время свободного развития пожара на момент прибытия подразделения;
  • t обн время развития пожара с момента его возникновения до момента его обнаружения (2 мин. – при наличии АПС или АУПТ, 2-5 мин. – при наличии круглосуточного дежурства, 5 мин. – во всех остальных случаях);
  • t сооб – время сообщения о пожаре в пожарную охрану (1 мин. – если телефон находится в помещении дежурного, 2 мин. – если телефон в другом помещении);
  • t сб = 1 мин. – время сбора личного состава по тревоге;
  • t сл – время следования пожарного подразделения (2 мин. на 1 км пути );
  • t бр – время боевого развертывания (3 мин. при подаче 1-го ствола, 5 мин. в остальных случаях).

2) Определение расстояния R , пройденного фронтом горения, за время t .

при t св ≤ 10 мин.: R = 0,5 ·V л · t св (м);

при t вв > 10 мин.: R = 0,5 ·V л · 10 + V л · (t вв – 10)= 5 ·V л + V л · (t вв – 10) (м);

при t вв < t * ≤ t лок : R = 5 ·V л + V л · (t вв – 10) + 0,5 ·V л · (t * – t вв ) (м).

  • где t св – время свободного развития,
  • t вв – время на момент введения первых стволов на тушение,
  • t лок – время на момент локализации пожара,
  • t * – время между моментами локализации пожара и введения первых стволов на тушение.

3) Определение площади пожара.

Площадь пожара S п – это площадь проекции зоны горения на горизонтальную или (реже) на вертикальную плоскость. При горении на нескольких этажах за площадь пожара принимают суммарную площадь пожара на каждом этаже.

Периметр пожара Р п – это периметр площади пожара.

Фронт пожара Ф п – это часть периметра пожара в направлении (направлениях) распространения горения.

Для определения формы площади пожара следует вычертить схему объекта в масштабе и от места возникновения пожара отложить в масштабе величину пути R , пройденного огнем во все возможные стороны.

При этом принято выделять три варианта формы площади пожара:

  • круговую (Рис.2);
  • угловую (Рис. 3, 4);
  • прямоугольную (Рис. 5).

При прогнозировании развития пожара следует учитывать, что форма площади пожара может меняться. Так, при достижении фронтом пламени ограждающей конструкции или края площадки, принято считать, что фронт пожара спрямляется и форма площади пожара изменяется (Рис. 6).

а) Площадь пожара при круговой форме развития пожара.

S п = k · p · R 2 (м 2) ,

  • где k = 1 – при круговой форме развития пожара (рис. 2),
  • k = 0,5 – при полукруговой форме развития пожара (рис. 4),
  • k = 0,25 – при угловой форме развития пожара (рис. 3).

б) Площадь пожара при прямоугольной форме развития пожара.

S п = n ·b · R (м 2) ,

  • где n – количество направлений развития пожара,
  • b – ширина помещения.

в) Площадь пожара при комбинированной форме развития пожара (рис 7)

S п = S 1 + S 2 (м 2)

а) Площадь тушения пожара по периметру при круговой форме развития пожара.

S т = k · p · (R 2 – r 2) = k · p ··h т · (2·R – h т) (м 2),

  • где r = R h т ,
  • h т – глубина тушения стволов (для ручных стволов – 5м, для лафетных – 10 м).

б) Площадь тушения пожара по периметру при прямоугольной форме развития пожара.

S т = 2 ·h т · (a + b – 2 ·h т ) (м 2)– по всему периметру пожара ,

где а и b – соответственно длина и ширина фронта пожара.

S т = n·b·h т (м 2 ) – по фронту распространяющегося пожара ,

где b и n – соответственно ширина помещения и количество направлений подачи стволов.

5) Определение требуемого расхода воды на тушение пожара.

Q т тр = S п · I тр при S п ≤ S т (л/с) или Q т тр = S т · I тр при S п > S т (л/с)

Интенсивность подачи огнетушащих веществ I тр – это количество огнетушащего вещества, подаваемое за единицу времени на единицу расчетного параметра.

Различают следующие виды интенсивности:

Линейная – когда в качестве расчетного принят линейный параметр: например, фронт или периметр. Единицы измерения – л/с∙м. Линейная интенсивность используется, например, при определении количества стволов на охлаждение горящих и соседних с горящим резервуаров с нефтепродуктами.

Поверхностная – когда в качестве расчетного параметра принята площадь тушения пожара. Единицы измерения – л/с∙м 2 . Поверхностная интенсивность используется в практике пожаротушения наиболее часто, так как для тушения пожаров в большинстве случаев используется вода, которая тушит пожар по поверхности горящих материалов.

Объемная – когда в качестве расчетного параметра принят объем тушения. Единицы измерения – л/с∙м 3 . Объемная интенсивность используется, преимущественно, при объемном тушении пожаров, например, инертными газами.

Требуемая I тр – количество огнетушащего вещества, которое необходимо подавать за единицу времени на единицу расчетного параметра тушения. Определяется требуемая интенсивность на основе расчетов, экспериментов, статистических данных по результатам тушения реальных пожаров и т.д.

Фактическая I ф – количество огнетушащего вещества, которое фактически подано за единицу времени на единицу расчетного параметра тушения.

6) Определение требуемого количества стволов на тушение.

а) N т ст = Q т тр / q т ст – по требуемому расходу воды,

б) N т ст = Р п / Р ст – по периметру пожара,

Р п – часть периметра, на тушение которого вводятся стволы

Р ст = q ст / I тр h т – часть периметра пожара, которая тушится одним стволом. Р = 2 · p ·L (длина окружности), Р = 2 · а + 2 ·b (прямоугольник)

в) N т ст = (m + A ) – в складах со стеллажным хранением (рис. 11) ,

  • где n – количество направлений развития пожара (ввода стволов),
  • m – количество проходов между горящими стеллажами,
  • A – количество проходов между горящим и соседним негорящим стеллажами.

7) Определение требуемого количества отделений для подачи стволов на тушение.

N т отд = N т ст / n ст отд ,

где n ст отд – количество стволов, которое может подать одно отделение.

8) Определение требуемого расхода воды на защиту конструкций.

Q з тр = S з · I з тр (л/с) ,

  • где S з – защищаемая площадь (перекрытия, покрытия, стены, перегородки, оборудование и т.п.),
  • I з тр = (0,3-0,5) ·I тр – интенсивность подачи воды на защиту.

9) Водоотдача кольцевой водопроводной сети рассчитывается по формуле:

Q к сети = ((D/25) V в) 2 [л/с], (40) где,

  • D – диаметр водопроводной сети, [мм];
  • 25 – переводное число из миллиметров в дюймы;
  • V в – скорость движения воды в водопроводе, которая равна:
  • – при напоре водопроводной сети Hв =1,5 [м/с];
  • – при напоре водопроводной сети H>30 м вод.ст. –V в =2 [м/с].

Водоотдача тупиковой водопроводной сети рассчитывается по формуле:

Q т сети = 0,5 Q к сети, [л/с].

10) Определение требуемого количества стволов на защиту конструкций.

N з ст = Q з тр / q з ст ,

Также количество стволов часто определяется без аналитического расчета из тактических соображений, исходя из мест размещения стволов и количества защищаемых объектов, например, на каждую ферму по одному лафетному стволу, в каждое смежное помещение по стволу РС-50.

11) Определение требуемого количества отделений для подачи стволов на защиту конструкций.

N з отд = N з ст / n ст отд

12) Определение требуемого количества отделений для выполнения других работ (эвакуация людей, мат. ценностей, вскрытия и разборки конструкций).

N л отд = N л / n л отд , N мц отд = N мц / n мц отд , N вск отд = S вск / S вск отд

13) Определение общего требуемого количества отделений.

N общ отд = N т ст + N з ст + N л отд + N мц отд + N вск отд

На основании полученного результата РТП делает вывод о достаточности привлеченных к тушению пожара сил и средств. Если сил и средств недостаточно, то РТП делает новый расчет на момент прибытия последнего подразделения по следующему повышенному номеру (рангу) пожара.

14) Сравнение фактического расхода воды Q ф на тушение, защиту и водоотдачи сети Q вод противопожарного водоснабжения

Q ф = N т ст · q т ст + N з ст · q з ст Q вод

15) Определение количества АЦ, устанавливаемых на водоисточники для подачи расчетного расхода воды.

На водоисточники устанавливают не всю технику, которая прибывает на пожар, а такое количество, которое обеспечило бы подачу расчетного расхода, т.е.

N АЦ = Q тр / 0,8 Q н ,

где Q н – подача насоса, л/с

Такой оптимальный расход проверяют по принятым схемам боевого развертывания, с учетом длинны рукавных линий и расчетного количества стволов. В любом из указанных случаев, если позволяют условия (в частности, насосно-рукавная система), боевые расчеты прибывающих подразделений должны использоваться для работы от уже установленных на водоисточники автомобилей.

Это не только обеспечит использование техники на полную мощность, но и ускорит введение сил и средств на тушение пожара.

В зависимости от обстановки на пожаре требуемый расход огнетушащего вещества определяют на всю площадь пожара или на площадь тушения пожара. На основании полученного результата РТП может сделать вывод о достаточности привлеченных к тушению пожара сил и средств.

Расчет сил и средств для тушения пожаров воздушно-механической пеной на площади

(не распространяющиеся пожары или условно приводящиеся к ним)

Исходные данные для расчета сил и средств:

  • площадь пожара;
  • интенсивность подачи раствора пенообразователя;
  • интенсивность подачи воды на охлаждение;
  • расчетное время тушения.

При пожарах в резервуарных парках за расчетный параметр принимают площадь зеркала жидкости резервуара или наибольшую возможную площадь разлива ЛВЖ при пожарах на самолетах.

На первом этапе боевых действий производят охлаждение горящих и соседних резервуаров.

1) Требуемое количество стволов на охлаждение горящего резервуара.

N зг ств = Q зг тр / q ств = n π D гор I зг тр / q ств , но не менее 3 х стволов,

I зг тр = 0,8 л/см – требуемая интенсивность для охлаждения горящего резервуара,

I зг тр = 1,2 л/см – требуемая интенсивность для охлаждения горящего резервуара при пожаре в ,

Охлаждение резервуаров W рез ≥ 5000 м 3 и более целесообразно осуществлять лафетными стволами.

2) Требуемое количество стволов на охлаждение соседнего не горящего резервуара.

N зс ств = Q зс тр / q ств = n 0,5 π D сос I зс тр / q ств , но не менее 2 х стволов,

I зс тр = 0,3 л/см – требуемая интенсивность для охлаждения соседнего не горящего резервуара,

n – количество горящих или соседних резервуаров соответственно,

D гор , D сос – диаметр горящего или соседнего резервуара соответственно (м),

q ств – производительность одного (л/с),

Q зг тр , Q зс тр – требуемый расход воды на охлаждение (л/с).

3) Требуемое количество ГПС N гпс на тушение горящего резервуара.

N гпс = S п I р-ор тр / q р-ор гпс (шт.),

S п – площадь пожара (м 2),

I р-ор тр – требуемая интенсивность подачи раствора пенообразователя на тушение (л/с∙м 2). При t всп ≤ 28 о C I р-ор тр = 0,08 л/с∙м 2 , при t всп > 28 о C I р-ор тр = 0,05 л/с∙м 2 (см. приложение № 9)

q р-ор гпс производительность ГПС по раствору пенообразователя (л/с).

4) Требуемое количество пенообразователя W по на тушение резервуара.

W по = N гпс q по гпс ∙ 60 ∙ τ р ∙ К з (л),

τ р = 15 минут – расчетное время тушения при подаче ВМП сверху,

τ р = 10 минут – расчетное время тушения при подаче ВМП под слой горючего,

К з = 3 – коэффициент запаса (на три пенные атаки),

q по гпс – производительность ГПС по пенообразователю (л/с).

5) Требуемое количество воды W в т на тушение резервуара.

W в т = N гпс q в гпс ∙ 60 ∙ τ р ∙ К з (л),

q в гпс – производительность ГПС по воде (л/с).

6) Требуемое количество воды W в з на охлаждение резервуаров.

W в з = N з ств q ств τ р ∙ 3600 (л),

N з ств – общее количество стволов на охлаждение резервуаров,

q ств – производительность одного пожарного ствола (л/с),

τ р = 6 часов – расчетное время охлаждения наземных резервуаров от передвижной пожарной техники (СНиП 2.11.03-93),

τ р = 3 часа – расчетное время охлаждения подземных резервуаров от передвижной пожарной техники (СНиП 2.11.03-93).

7) Общее требуемое количество воды на охлаждение и тушение резервуаров.

W в общ = W в т + W в з (л)

8) Ориентировочное время наступления возможного выброса Т нефтепродуктов из горящего резервуара.

T = ( H h ) / ( W + u + V ) (ч), где

H – начальная высота слоя горючей жидкости в резервуаре, м;

h – высота слоя донной (подтоварной) воды, м;

W – линейная скорость прогрева горючей жидкости, м/ч (табличное значение);

u – линейная скорость выгорания горючей жидкости, м/ч (табличное значение);

V – линейная скорость понижения уровня вследствие откачки, м/ч (если откачка не производится, то V = 0 ).

Тушение пожаров в помещениях воздушно-механической пеной по объему

При пожарах в помещениях иногда прибегают к тушению пожара объемным способом, т.е. заполняют весь объем воздушно-механической пеной средней кратности (трюмы кораблей, кабельные тоннели, подвальные помещения и т.д.).

При подаче ВМП в объем помещения должно быть не менее двух проемов. Через один проем подают ВМП, а через другой происходит вытеснение дыма и избыточного давления воздуха, что способствует лучшему продвижению ВМП в помещении.

1) Определение требуемого количества ГПС для объемного тушения.

N гпс = W пом ·К р / q гпс t н , где

W пом – объем помещения (м 3);

К р = 3 – коэффициент, учитывающий разрушение и потерю пены;

q гпс – расход пены из ГПС (м 3 /мин.);

t н = 10 мин – нормативное время тушения пожара.

2) Определение требуемого количества пенообразователя W по для объемного тушения.

W по = N гпс q по гпс ∙ 60 ∙ τ р ∙ К з (л),

Пропускная способность рукавов

Приложение № 1

Пропускная способность одного прорезиненного рукава длиной 20 метров в зависимости от диаметра

Пропускная способность, л/с

Диаметр рукавов, мм

51 66 77 89 110 150
10,2 17,1 23,3 40,0

Приложение 2

Величины сопротивления одного напорного рукава длиной 20 м

Тип рукавов Диаметр рукавов, мм
51 66 77 89 110 150
Прорезиненные 0,15 0,035 0,015 0,004 0,002 0,00046
Непрорезиненные 0,3 0,077 0,03

Приложение 3

Объем одного рукава длиной 20 м

Приложение № 4

Геометрические характеристики основных типов стальных вертикальных резервуаров (РВС).

№ п/п Тип резервуара Высота резервуара, м Диаметр резервуара, м Площадь зеркала горючего, м 2 Периметр резервуара, м
1 РВС-1000 9 12 120 39
2 РВС-2000 12 15 181 48
3 РВС-3000 12 19 283 60
4 РВС-5000 12 23 408 72
5 РВС-5000 15 21 344 65
6 РВС-10000 12 34 918 107
7 РВС-10000 18 29 637 89
8 РВС-15000 12 40 1250 126
9 РВС-15000 18 34 918 107
10 РВС-20000 12 46 1632 143
11 РВС-20000 18 40 1250 125
12 РВС-30000 18 46 1632 143
13 РВС-50000 18 61 2892 190
14 РВС-100000 18 85,3 5715 268
15 РВС-120000 18 92,3 6691 290

Приложение № 5

Линейные скорости распространения горения при пожарах на объектах.

Наименование объекта Линейная скорость распространения горения, м/мин
Административные здания 1,0…1,5
Библиотеки, архивы, книгохранилища 0,5…1,0
Жилые дома 0,5…0,8
Коридоры и галереи 4,0…5,0
Кабельные сооружения (горение кабелей) 0,8…1,1
Музеи и выставки 1,0…1,5
Типографии 0,5…0,8
Театры и Дворцы культуры (сцены) 1,0…3,0
Сгораемые покрытия цехов большой площади 1,7…3,2
Сгораемые конструкции крыш и чердаков 1,5…2,0
Холодильники 0,5…0,7
Деревообрабатывающие предприятия:
Лесопильные цехи (здания I, II, III СО) 1,0…3,0
То же, здания IV и V степеней огнестойкости 2,0…5,0
Сушилки 2,0…2,5
Заготовительные цеха 1,0…1,5
Производства фанеры 0,8…1,5
Помещения других цехов 0,8…1,0
Лесные массивы (скорость ветра 7…10 м/с, влажность 40 %)
Сосняк до 1,4
Ельник до 4,2
Школы, лечебные учреждения:
Здания I и II степеней огнестойкости 0,6…1,0
Здания III и IV степеней огнестойкости 2,0…3,0
Объекты транспорта:
Гаражи, трамвайные и троллейбусные депо 0,5…1,0
Ремонтные залы ангаров 1,0…1,5
Склады:
Текстильных изделий 0,3…0,4
Бумаги в рулонах 0,2…0,3
Резинотехнических изделий в зданиях 0,4…1,0
То же в штабелях на открытой площадке 1,0…1,2
Каучука 0,6…1,0
Товарно-материальных ценностей 0,5…1,2
Круглого леса в штабелях 0,4…1,0
Пиломатериалов (досок) в штабеля при влажности 16…18 % 2,3
Торфа в штабелях 0,8…1,0
Льноволокна 3,0…5,6
Сельские населенные пункты:
Жилая зона при плотной застройке зданиями V степени огнестойкости, сухой погоде 2,0…2,5
Соломенные крыши зданий 2,0…4,0
Подстилка в животноводческих помещениях 1,5…4,0

Приложение № 6

Интенсивность подачи воды при тушении пожаров, л/(м 2 .с)

1. Здания и сооружения
Административные здания:
I-III степени огнестойкости 0.06
IV степени огнестойкости 0.10
V степени огнестойкости 0.15
подвальные помещения 0.10
чердачные помещения 0.10
Больницы 0.10
2. Жилые дома и подсобные постройки:
I-III степени огнестойкости 0.06
IV степени огнестойкости 0.10
V степени огнестойкости 0.15
подвальные помещения 0.15
чердачные помещения 0.15
3.Животноводческие здания:
I-III степени огнестойкости 0.15
IV степени огнестойкости 0.15
V степени огнестойкости 0.20
4.Культурно-зрелищные учреждения (театры, кинотеатры, клубы, дворцы культуры):
сцена 0.20
зрительный зал 0.15
подсобные помещения 0.15
Мельницы и элеваторы 0.14
Ангары, гаражи, мастерские 0.20
локомотивные, вагонные, трамвайные и троллейбусные депо 0.20
5.Производственные здания участки и цехи:
I-II степени огнестойкости 0.15
III-IV степени огнестойкости 0.20
V степени огнестойкости 0.25
окрасочные цехи 0.20
подвальные помещения 0.30
чердачные помещения 0.15
6. Сгораемые покрытия больших площадей
при тушении снизу внутри здания 0.15
при тушении снаружи со стороны покрытия 0.08
при тушении снаружи при развившемся пожаре 0.15
Строящиеся здания 0.10
Торговые предприятия и склады 0.20
Холодильники 0.10
7. Электростанции и подстанции:
кабельные тоннели и полуэтажи 0.20
машинные залы и котельные помещения 0.20
галереи топливоподачи 0.10
трансформаторы, реакторы, масляные выключатели* 0.10
8. Твердые материалы
Бумага разрыхленная 0.30
Древесина:
балансовая при влажности, %:
40-50 0.20
менее 40 0.50
пиломатериалы в штабелях в пределах одной группы при влажности, %:
8-14 0.45
20-30 0.30
свыше 30 0.20
круглый лес в штабелях в пределах одной группы 0.35
щепа в кучах с влажностью 30-50 % 0.10
Каучук, резина и резинотехнические изделия 0.30
Пластмассы:
термопласты 0.14
реактопласты 0.10
полимерные материалы 0.20
текстолит, карболит, отходы пластмасс, триацетатная пленка 0.30
Хлопок и другие волокнистые материалы:
открытые склады 0.20
закрытые склады 0.30
Целлулоид и изделия из него 0.40
Ядохимикаты и удобрения 0.20

* Подача тонкораспыленной воды.

Тактико-технические показатели приборов подачи пены

Прибор подачи пены Напор у прибора, м Концция р-ра, % Расход, л/с Кратность пены Производ-сть по пене, м куб./мин(л/с) Дальность подачи пены, м
воды ПО р-ра ПО
ПЛСК-20 П 40-60 6 18,8 1,2 20 10 12 50
ПЛСК-20 С 40-60 6 21,62 1,38 23 10 14 50
ПЛСК-60 С 40-60 6 47,0 3,0 50 10 30 50
СВП 40-60 6 5,64 0,36 6 8 3 28
СВП(Э)-2 40-60 6 3,76 0,24 4 8 2 15
СВП(Э)-4 40-60 6 7,52 0,48 8 8 4 18
СВП-8(Э) 40-60 6 15,04 0,96 16 8 8 20
ГПС-200 40-60 6 1,88 0,12 2 80-100 12 (200) 6-8
ГПС-600 40-60 6 5,64 0,36 6 80-100 36 (600) 10
ГПС-2000 40-60 6 18,8 1,2 20 80-100 120 (2000) 12

Линейная скорость выгорания и прогрева углеводородных жидкостей

Наименование горючей жидкости Линейная скорость выгорания, м/ч Линейная скорость прогрева горючего, м/ч
Бензин До 0,30 До 0,10
Керосин До 0,25 До 0,10
Газовый конденсат До 0,30 До 0,30
Дизельное топливо из газового конденсата До 0,25 До 0,15
Смесь нефти и газового конденсата До 0,20 До 0,40
Дизельное топливо До 0,20 До 0,08
Нефть До 0,15 До 0,40
Мазут До 0,10 До 0,30

Примечание: с увеличением скорости ветра до 8-10 м/с скорость выгорания горючей жидкости возрастает на 30-50 %. Сырая нефть и мазут, содержащие эмульсионную воду, могут выгорать с большей скоростью, чем указано в таблице.

Изменения и дополнения в Руководство по тушению нефти и нефтепродуктов в резервуарах и резервуарных парках

(информационное письмо ГУГПС от 19.05.00 № 20/2.3/1863)

Таблица 2.1. Нормативные интенсивности подачи пены средней кратности для тушения пожаров нефти и нефтепродуктов в резервуарах

Примечание: Для нефти с примесями газового конденсата, а также для нефтепродуктов, полученных из газового конденсата, необходимо определение нормативной интенсивности в соответствии с действующими методиками.

Таблица 2.2. Нормативная интенсивность подачи пены низкой кратности для тушения нефти и нефтепродуктов в резервуарах*

№ п/п Вид нефтепродукта Нормативная интенсивность подачи раствора пенообразователя, л м 2 с’
Фторсодержащие пенообразователи “не пленкообразующие” Фторсинтетические “пленкообразующие” пенообразователи Фторпротеиновые “пленкообразующие” пенообразователи
на поверхность в слой на поверхность в слой на поверхность в слой
1 Нефть и нефтепродукты с Т всп 28° С и ниже 0,08 0,07 0,10 0,07 0,10
2 Нефть и нефтепродукты с Т всп более 28 °С 0,06 0,05 0,08 0,05 0,08
3 Стабильный газовый конденсат 0,12 0,10 0,14 0,10 0,14

Основные показатели, характеризующих тактические возможности пожарных подразделений

Руководитель тушения пожара должен не только знать возможности подразделений, но и уметь определять основные тактические показатели:

    ;
  • возможную площадь тушения воздушно-механической пеной;
  • возможный объем тушения пеной средней кратности с учетом имеющегося на автомобиле запаса пенообразователя;
  • предельное расстояние по подаче огнетушащих средств.

Расчеты приведены согласно Справочник руководителя тушения пожара (РТП). Иванников В.П., Клюс П.П., 1987

Определение тактических возможностей подразделения без установки пожарного автомобиля на водоисточник

1) Определение формула времени работы водяных стволов от автоцистерны:

t раб = (V ц – N p ·V p) / N ст ·Q ст ·60 (мин.) ,

N р = k · L / 20 = 1,2· L / 20 (шт.) ,

  • где: t раб – время работы стволов, мин.;
  • V ц – объем воды в цистерне , л;
  • N р – число рукавов в магистральной и рабочих линиях, шт.;
  • V р – объем воды в одном рукаве, л (см. прилож.);
  • N ст – число водяных стволов, шт.;
  • Q ст – расход воды из стволов, л/с (см. прилож.);
  • k – коэффициент, учитывающий неровности местности (k = 1,2 – стандартное значение),
  • L – расстояние от места пожара до пожарного автомобиля (м).

Дополнительно обращаем Ваше внимание, что в справочнике РТП Тактические возможности пожарных подразделений. Теребнев В.В., 2004 в разделе 17.1 приводится, точно такая же формула но с коэффициентом 0,9: Tраб = (0,9Vц – Np ·Vp) / Nст ·Qст ·60 (мин.)

2) Определение формула возможной площади тушения водой S Т от автоцистерны:

S Т = (V ц – N p ·V p) / J тр · t расч · 60 (м 2) ,

  • где: J тр – требуемая интенсивность подачи воды на тушение, л/с·м 2 (см. прилож.);
  • t расч = 10 мин. – расчетное время тушения.

3) Определение формула времени работы приборов подачи пены от автоцистерны:

t раб = (V р-ра – N p ·V p) / N гпс ·Q гпс ·60 (мин.) ,

  • где: V р-ра – объем водного раствора пенообразователя, полученный от заправочных емкостей пожарной машины, л;
  • N гпс – число ГПС (СВП), шт;
  • Q гпс – расход раствора пенообразователя из ГПС (СВП), л/с (см. прилож.).

Чтобы определить объем водного раствора пенообразователя, надо знать, насколько будут израсходованы вода и пенообразователь.

К В = 100–С / С = 100–6 / 6 = 94 / 6 = 15,7 – количество воды (л), приходящееся на 1 литр пенообразователя для приготовления 6-ти % раствора (для получения 100 литров 6-ти % раствора необходимо 6 литров пенообразователя и 94 литра воды).

Тогда фактическое количество воды, приходящееся на 1 литр пенообразователя, составляет:

К ф = V ц / V по ,

  • где V ц – объем воды в цистерне пожарной машины, л;
  • V по – объем пенообразоователя в баке, л.

если К ф < К в, то V р-ра = V ц / К в + V ц (л) – вода расходуется полностью, а часть пенообразователя остается.

если К ф > К в, то V р-ра = V по ·К в + V по (л) – пенообразователь расходуется полностью, а часть воды остается.

4) Определение возможной формула площади тушения ЛВЖ и ГЖ воздушно-механической пеной:

S т = (V р-ра – N p ·V p) / J тр · t расч · 60 (м 2),

  • где: S т – площадь тушения, м 2 ;
  • J тр – требуемая интенсивность подачи раствора ПО на тушение, л/с·м 2 ;

При t всп ≤ 28 о C J тр = 0,08 л/с∙м 2 , при t всп > 28 о C J тр = 0,05 л/с∙м 2 .

t расч = 10 мин. – расчетное время тушения.

5) Определение формула объема воздушно-механической пены , получаемого от АЦ:

V п = V р-ра ·К (л),

  • где: V п – объем пены, л;
  • К – кратность пены;

6) Определение возможного объема тушения воздушно-механической пеной:

V т = V п / К з (л, м 3),

  • где: V т – объем тушения пожара;
  • К з = 2,5–3,5 – коэффициент запаса пены, учитывающий разрушение ВМП вследствие воздействия высокой температуры и других факторов.

Примеры решения задач

Пример № 1. Определить время работы двух стволов Б с диаметром насадка 13 мм при напоре 40 метров, если до разветвления проложен один рукав d 77 мм, а рабочие линии состоят из двух рукавов d 51 мм от АЦ-40(131)137А.

Решение:

t = (V ц – N р V р) / N ст ·Q ст · 60 =2400 – (1· 90 + 4 · 40) / 2 · 3,5 · 60 = 4,8 мин .

Пример № 2. Определить время работы ГПС-600, если напор у ГПС-600 60 м, а рабочая линия состоит из двух рукавов диаметром 77 мм от АЦ-40 (130) 63Б.

Решение:

К ф = V ц / V по = 2350/170 = 13,8.

К ф = 13,8 < К в = 15,7 для 6-ти % раствора

V р-ра = V ц / К в + V ц = 2350/15,7 + 2350 » 2500 л.

t = (V р-ра – N p ·V p) / N гпс ·Q гпс ·60 = (2500 – 2 · 90)/1 · 6 · 60 = 6,4 мин .

Пример № 3. Определить возможную площадь тушения бензина ВМП средней кратности от АЦ-4-40 (Урал-23202).

Решение:

1) Определяем объем водного раствора пенообразователя:

К ф = V ц / V по = 4000/200 = 20.

К ф = 20 > К в = 15,7 для 6-ти % раствора,

V р-ра = V по ·К в + V по = 200·15,7 + 200 = 3140 + 200 = 3340 л.

2) Определяем возможную площадь тушения:

S т = V р-ра / J тр · t расч ·60 = 3340/0,08 ·10 · 60 = 69,6 м 2 .

Пример № 4. Определить возможный объем тушения (локализации) пожара пеной средней кратности (К=100) от АЦ-40(130)63б (см. пример № 2).

Решение:

V п = V р-ра · К = 2500 · 100 = 250000 л = 250 м 3 .

Тогда объем тушения (локализации):

V т = V п /К з = 250/3 = 83 м 3 .

Определение тактических возможностей подразделения с установкой пожарного автомобиля на водоисточник

Рис. 1. Схема подачи воды в перекачку

Расстояние в рукавах (штуках) Расстояние в метрах
1) Определение предельного расстояния от места пожара до головного пожарного автомобиля N гол ( L гол ).
N мм ( L мм ), работающими в перекачку (длины ступени перекачки).
N ст
4) Определение общего количества пожарных машин для перекачки N авт
5) Определение фактического расстояния от места пожара до головного пожарного автомобиля N ф гол ( L ф гол ).
  • H н = 90÷100 м – напор на насосе АЦ,
  • H разв = 10 м – потери напора в разветвлении и рабочих рукавных линиях,
  • H ст = 35÷40 м – напор перед стволом,
  • H вх ≥ 10 м – напор на входе в насос следующей ступени перекачки,
  • Z м – наибольшая высота подъема (+) или спуска (–) местности (м),
  • Z ст – наибольшая высота подъема (+) или спуска (–) стволов (м),
  • S – сопротивление одного пожарного рукава,
  • Q – суммарный расход воды в одной из двух наиболее загруженной магистральной рукавной линии (л/с),
  • L – расстояние от водоисточника до места пожара (м),
  • N рук – расстояние от водоисточника до места пожара в рукавах (шт.).

Пример: Для тушения пожара необходимо подать три ствола Б с диаметром насадка 13 мм, максимальная высота подъема стволов 10 м. Ближайшим водоисточником является пруд, расположенный на расстоянии 1,5 км от места пожара, подъем местности равномерный и составляет 12 м. Определить количество автоцистерн АЦ−40(130) для перекачки воды на тушение пожара.

Решение:

1) Принимаем способ перекачки из насоса в насос по одной магистральной линии.

2) Определяем предельное расстояние от места пожара до головного пожарного автомобиля в рукавах.

N ГОЛ = / SQ 2 = / 0,015 · 10,5 2 = 21,1 = 21.

3) Определяем предельное расстояние между пожарными автомобилями, работающими в перекачку, в рукавах.

N МР = / SQ 2 = / 0,015 · 10,5 2 = 41,1 = 41.

4) Определяем расстояние от водоисточника до места пожара с учетом рельефа местности.

N Р = 1,2 · L/20 = 1,2 · 1500 / 20 = 90 рукавов.

5) Определяем число ступеней перекачки

N СТУП = (N Р − N ГОЛ) / N МР = (90 − 21) / 41 = 2 ступени

6) Определяем количество пожарных автомобилей для перекачки.

N АЦ = N СТУП + 1 = 2 + 1 = 3 автоцистерны

7) Определяем фактическое расстояние до головного пожарного автомобиля с учетом установки его ближе к месту пожара.

N ГОЛ ф = N Р − N СТУП · N МР = 90 − 2 · 41 = 8 рукавов.

Следовательно, головной автомобиль можно приблизить к месту пожара.

Методика расчета потребного количества пожарных автомобилей для подвоза воды к месту тушения пожара

Если застройка сгораемая, а водоисточники находятся на очень боль­шом расстоянии, то время, затраченное на прокладку рукавных линий, будет слишком большим, а пожар скоротечным. В таком случае лучше подвозить воду автоцистернами с параллельной организацией перекачки. В каждом конкретном случае необходимо решать тактическую задачу, при­нимая во внимание возможные масштабы и длительность пожара, рас­стояние до водоисточников, скорость сосредоточения пожарных автомо­билей, рукавных автомобилей и другие особенности гарнизона.

Формула расхода воды АЦ

(мин.) – время расхода воды АЦ на месте тушения пожара;

  • L – расстояние от места пожара до водоисточника (км);
  • 1 – минимальное количество АЦ в резерве (может быть увеличено);
  • V движ – средняя скорость движения АЦ (км/ч);
  • W цис – объем воды в АЦ (л);
  • Q п – средняя подача воды насосом, заправляющим АЦ, или расход воды из пожарной колонки, установленной на пожарный гидрант (л/с);
  • N пр – число приборов подачи воды к месту тушения пожара (шт.);
  • Q пр – общий расход воды из приборов подачи воды от АЦ (л/с).

Рис. 2. Схема подачи воды способом подвоза пожарными автомобилями.

Подвоз воды должен быть бесперебойным. Следует иметь в виду, что у водоисточников необходимо (в обязательном порядке) создавать пункт заправки автоцистерн водой.

Пример. Определить количество автоцистерн АЦ−40(130)63б для подвоза воды из пруда, расположенного в 2 км от места пожара, если для тушения необходимо подать три ствола Б с диаметром насадка 13 мм. Заправку автоцистерн осуществляют АЦ−40(130)63б, средняя скорость движения автоцистерн 30 км/ч.

Решение:

1) Определяем время следования АЦ к месту пожара или обратно.

t СЛ = L · 60 / V ДВИЖ = 2 · 60 / 30 = 4 мин.

2) Определяем время заправки автоцистерн.

t ЗАП = V Ц /Q Н · 60 = 2350 / 40 · 60 = 1 мин.

3)Определяем время расхода воды на месте пожара.

t РАСХ = V Ц / N СТ · Q СТ · 60 = 2350 / 3 · 3,5 · 60 = 4 мин.

4) Определяем количество автоцистерн для подвоза воды к месту пожара.

N АЦ = [(2t СЛ + t ЗАП) / t РАСХ ] + 1 = [(2 · 4 + 1) / 4] + 1 = 4 автоцистерны.

Методика расчета подачи воды к месту тушения пожара с помощью гидроэлеваторных систем

При наличии заболоченных или густо заросших берегов, а так же при значительном расстоянии до поверхности воды (более 6,5-7 метров), превышающем глубину всасывания пожарного насоса (высокий крутой берег, колодцы и т.п.) необходимо применять для забора воды гидроэлеватор Г-600 и его модификации.

1) Определим требуемое количество воды V СИСТ , необходимое для запуска гидроэлеваторной системы:

V СИСТ = N Р ·V Р ·K ,

N Р = 1,2·(L + Z Ф ) / 20 ,

  • гдеN Р − число рукавов в гидроэлеваторной системе (шт.);
  • V Р − объем одного рукава длиной 20 м (л);
  • K − коэффициент, зависящий от количества гидроэлеваторов в системе, работающей от одной пожарной машины (К = 2 – 1 Г-600, K =1,5 – 2 Г-600);
  • L – расстояние от АЦ до водоисточника (м);
  • Z Ф – фактическая высота подъема воды (м).

Определив требуемое количество воды для запуска гидроэлеваторной системы, сравнивают полученный результат с запасом воды, находящимся в пожарной автоцистерне, и выявляют возможность запуска данной системы в работу.

2) Определим возможность совместной работы насоса АЦ с гидроэлеваторной системой.

И = Q СИСТ / Q Н ,

Q СИСТ = N Г (Q 1 + Q 2 ) ,

  • гдеИ – коэффициент использования насоса;
  • Q СИСТ − расход воды гидроэлеваторной системой (л/с);
  • Q Н − подача насоса пожарного автомобиля (л/с);
  • N Г − число гидроэлеваторов в системе (шт.);
  • Q 1 = 9,1 л/с − рабочий расход воды одного гидроэлеватора;
  • Q 2 = 10 л/с − подача одного гидроэлеватора.

При И < 1 система будет работать, при И = 0,65-0,7 будет наиболее устойчивая совместная и насоса.

Следует иметь в виду, что при заборе воды с больших глубин (18-20м) необходимо создавать на насосе напор 100 м. В этих условиях рабочий расход воды в системах будет повышаться, а расход насоса – понижаться против нормального и может оказаться, что сумма рабочего и эжектируемого расходов превысит расход насоса. В этих условиях система работать не будет.

3) Определим условную высоту подъема воды Z УСЛ для случая, когда длина рукавных линий ø77 мм превышает 30 м:

Z УСЛ = Z Ф + N Р · h Р (м),

гдеN Р − число рукавов (шт.);

h Р − дополнительные потери напора в одном рукаве на участке линии свыше 30 м:

h Р = 7 м при Q = 10,5 л/с , h Р = 4 м при Q = 7 л/с , h Р = 2 м при Q = 3,5 л/с .

Z Ф фактическая высота от уровня воды до оси насоса или горловины цистерны (м).

4) Определим напор на насосе АЦ:

При заборе воды одним гидроэлеватором Г−600 и обеспечении работы определенного числа водяных стволов напор на насосе (если длина прорезиненных рукавов диаметром 77 мм до гидроэлеватора не превышает 30 м) определяют по табл. 1.

Определив условную высоту подъема воды, находим напор на насосе таким же образом по табл. 1 .

5) Определим предельное расстояние L ПР по подаче огнетушащих средств:

L ПР = (Н Н – (Н Р ± Z М ± Z СТ ) / SQ 2 ) · 20 (м) ,

  • где H Н напор на насосе пожарного автомобиля, м;
  • Н Р напор у разветвления (принимается равным: Н СТ + 10) , м;
  • Z М высота подъема (+) или спуска (−) местности, м;
  • Z СТ − высота подъема (+) или спуска (−) стволов, м;
  • S − сопротивление одного рукава магистральной линии
  • Q − суммарный расход из стволов, подсоединенных к одной из двух наиболее нагруженной магистральной линии, л/с.

Таблица 1.

Определение напора на насосе при заборе воды гидроэлеватором Г−600 и работе стволов по соответствующим схемам подачи воды на тушение пожара.

95 70 50 18 105 80 58 20 – 90 66 22 – 102 75 24 – – 85 26 – – 97

6) Определим общее количество рукавов в выбранной схеме:

N Р = N Р.СИСТ + N МРЛ,

  • где N Р.СИСТ − число рукавов гидроэлеваторной системы, шт;
  • N МРЛ − число рукавов магистральной рукавной линии, шт.

Примеры решения задач с использование гидроэлеваторных систем

Пример. Для тушения пожара необходимо подать два ствола соответственно в первый и второй этажи жилого дома. Расстояние от места пожара до автоцистерны АЦ−40(130)63б, установленной на водоисточник, 240 м, подъем местности составляет 10 м. Подъезд автоцистерны до водоисточника возможен на расстояние 50 м, высота подъема воды составляет 10 м. Определить возможность забора воды автоцистерной и подачи ее к стволам на тушение пожара.

Решение:

Рис. 3 Схема забора воды с помощью гидроэлеватора Г-600

2) Определяем число рукавов, проложенных к гидроэлеватору Г−600 с учетом неровности местности.

N Р = 1,2· (L + Z Ф) / 20 = 1,2 · (50 + 10) / 20 = 3,6 = 4

Принимаем четыре рукава от АЦ до Г−600 и четыре рукава от Г−600 до АЦ.

3) Определяем количество воды, необходимое для запуска гидроэлеваторной системы.

V СИСТ = N Р ·V Р ·K = 8· 90 · 2 = 1440 л < V Ц = 2350 л

Следовательно воды для запуска гидроэлеваторной системы достаточно.

4) Определяем возможность совместной работы гидроэлеваторной системы и насоса автоцистерны.

И = Q СИСТ / Q Н = N Г (Q 1 + Q 2) / Q Н = 1·(9,1 + 10) / 40 = 0,47 < 1

Работа гидроэлеваторной системы и насоса автоцистерны будет устойчивой.

5) Определяем необходимый напор на насосе для забора воды из водоема с помощью гидроэлеватора Г−600.

Поскольку длина рукавов к Г−600 превышает 30 м, сначала определяем условную высоту подъема воды: Z

Загрузка...
Top