Произведение чисел. Умножение или произведение натуральных чисел, их свойства

Задача 1.2
Даны два целых числа Х и Т. Если они имеют разные знаки, то присвоить Х значение произведения этих чисел, а Т - значение их разности по модулю. Если числа имеют одинаковые знаки, то присвоить Х значение разности по модулю исходных чисел, а Т - значение произведения этих чисел. Новые значения Х и Т вывести на экран.

Задача тоже несложная. “Непонятки” могут возникнуть только в том случае, если вы забыли, что такое разность по модулю (надеюсь, что такое произведение двух целых чисел, вы всё-таки помните))).

Разность по модулю двух чисел

Разность по модулю двух целых чисел (хотя не обязательно целых - это не имеет значения, просто в нашей задаче числа целые) - это, говоря по простому, когда итогом вычисления является модуль разности двух чисел.

То есть сначала выполняется операция вычитания одного числа из другого. А затем вычисляется модуль результата этой операции.

Математически это можно записать так:

Если кто забыл, что такое модуль или как его вычислить в Паскале, то см. .

Алгоритм определения знаков двух чисел

Решение задачи в целом довольно простое. Трудность у новичков может вызвать лишь определение знаков двух чисел. То есть надо ответить на вопрос: как узнать, имеют числа одинаковые знаки или разные.

Сначала напрашивается поочерёдное сравнение чисел с нулём. Это допустимо. Но исходный код будет довольно большим. Поэтому более правильно использовать такой алгоритм:

  1. Умножить числа друг на друга
  2. Если результат меньше нуля, значит у чисел разные знаки
  3. Если результат равен нулю или больше нуля, то у чисел одинаковые знаки

Этот алгоритм я выполнил в виде отдельной . А сама программа получилась такой, как показано в примерах на Паскале и С++ ниже.

Решение задачи 1.2 на Паскале program checknums; var A, X, T: integer; //**************************************************************** // Проверяет, имеют ли числа N1 и N2 одинаковые знаки. Если да, то // возвращает TRUE, иначе - FALSE //**************************************************************** function ZnakNumbers(N1, N2: integer) : boolean; begin := (N1 * N2) >= 0; end; //**************************************************************** // ОСНОВНАЯ ПРОГРАММА //**************************************************************** begin Write("X = "); ReadLn(X); Write("T = "); ReadLn(T); if ZnakNumbers(X, T) then //Если числа имеют одинаковые знаки begin A:= (X - T); //Получить разность по модулю исходных чисел T:= X * T; end else //Если числа имеют разные знаки begin A:= X * T; T:= Abs(X - T); end; X:= A; //Записать в Х значение А WriteLn("X = ", X); //Вывести Х WriteLn("T = ", T); //Вывести Т WriteLn("The end. Press ENTER..."); ReadLn; end.


Решение задачи 1.2 на С++ #include #include using namespace std; int A, X, T; //**************************************************************** // Проверяет, имеют ли числа N1 и N2 одинаковые знаки. Если да, то // возвращает TRUE, иначе - FALSE //**************************************************************** bool ZnakNumbers(int N1, int N2) { return ((N1 * N2) >= 0); } //**************************************************************** // ОСНОВНАЯ ПРОГРАММА //**************************************************************** int main(int argc, char *argv) { cout > X; cout > T; if (ZnakNumbers(X, T)) //Если числа имеют одинаковые знаки { A = abs(X - T); //Получить разность по модулю исходных чисел T = X * T; } else //Если числа имеют разные знаки { A = X * T; T = abs(X - T); } X = A; //Записать в Х значение А cout

Оптимизация

Эту простую программу можно ещё немного упростить, если не использовать функцию и немного переделать исходный код программы. При этом общее количество строк исходного кода немного сократится. Как это сделать - подумайте сами.

    - (product) Результат умножения. Произведение чисел, алгебраических выражений, векторов или матриц; может быть показано точкой, косой крестик или же просто написанием их последовательно один за другим, т.е. f(x).g(y), f(x) x g(y), f(x)g(y)… … Экономический словарь

    Наука о целых числах. Понятие целого числа (См. Число), а также арифметических операций над числами известно с древних времён и является одной из первых математических абстракций. Особое место среди целых чисел, т. е. чисел..., 3 … Большая советская энциклопедия

    Сущ., с., употр. часто Морфология: (нет) чего? произведения, чему? произведению, (вижу) что? произведение, чем? произведением, о чём? о произведении; мн. что? произведения, (нет) чего? произведений, чему? произведениям, (вижу) что? произведения,… … Толковый словарь Дмитриева

    Матрица математический объект, записываемый в виде прямоугольной таблицы чисел (или элементов кольца) и допускающий алгебраические операции (сложение, вычитание, умножение и др.) между ним и другими подобными объектами. Правила выполнения… … Википедия

    В арифметике под умножением понимают краткую запись суммы одинаковых слагаемых. Например, запись 5*3 обозначает «5 сложить с собой 3 раза», то есть является просто краткой записью для 5+5+5. Результат умножения называется произведением, а… … Википедия

    Раздел теории чисел, основной задачей к рого является изучение свойств целых чисел полей алгебраических чисел конечной степени над полем рациональных чисел. Все целые числа поля расширения К поля степени п могут быть получены с помощью… … Математическая энциклопедия

    Теория чисел, или высшая арифметика раздел математики, изучающий целые числа и сходные объекты. В теории чисел в широком смысле рассматриваются как алгебраические, так и трансцендентные числа, а также функции различного происхождения, которые… … Википедия

    Раздел теории чисел, в к ром изучаются закономерности распределения простых чисел (п. ч.) среди натуральных чисел. Центральной является проблема наилучшего асимптотич. выражения при функции p(х), обозначающей число п. ч., не превосходящих х, а… … Математическая энциклопедия

    - (в зарубежной литературе scalar product, dot product, inner product) операция над двумя векторами, результатом которой является число (скаляр), не зависящее от системы координат и характеризующее длины векторов сомножителей и угол между… … Википедия

    Определённая на векторном пространстве L над полем K симметричная эрмитова форма, рассматриваемая обычно в качестве составной части определения этого пространства, делающей пространство (в зависимости от типа пространства и свойств внутреннего … Википедия

Книги

  • Сборник задач по мат-ке , Бачурин В.. Рассматриваемые в книге вопросы по математике вполне отвечают содержанию любой из трех программ: школьной, подготовительных отделений, вступительных экзаменов. Ихотя эта книга называется…
  • Живая материя. Физика живого и эволюционных процессов , Яшин А.А.. В настоящей монографии обобщены исследования автора за последние несколько лет. Экспериментальные результаты, представленные в книге, получены Тульской научной школой биофизики полей и…

Если концертный зал освещается 3 люстрами по 25 лампочек в каждой, то всего лампочек в этих люстрах будет 25 + 25 + 25, то есть 75.

Сумму, в которой все слагаемые равны друг другу, записывают короче: вместо 25 + 25 + 25 пишут 25 3. Значит, 25 3 = 75 (рис. 43). Число 75 называют произведением чисел 25 и 3, а числа 25 и 3 называют множителями .

Рис. 43. Произведение чисел 25 и 3

Умножить число m на натуральное число n – значит найти сумму n слагаемых, каждое из которых равно m.

Выражение m n и значение этого выражения называют произведением чисел m и n . Числа, которые перемножают называют множителями . Т.е. m и n – множители.

Произведения 7 4 и 4 7 равны одному и тому же числу 28 (рис. 44).

Рис. 44. Произведение 7 4 = 4 7

1. Произведение двух чисел не изменяется при перестановке множителей .

переместительным

a × b = b × a .

Произведения (5 3) 2 = 15 2 и 5 (3 2) = 5 6 имеют одно и то же значение 30. Значит, 5 (3 2) = (5 3) 2 (рис. 45).

Рис. 45. Произведение (5 3) 2 = 5 (3 2)

2. Чтобы умножить число на произведение двух чисел, можно сначала умножить его на первым множитель, а потом полученное произведение умножить на второй множитель.

Это свойство умножения называют сочетательным . С помощью букв его записывают так:

а (b с) = (а b с).

Сумма n слагаемых, каждое из которых равно 1, равна n. Поэтому верно равенство 1 n = n.

Сумма n слагаемых, каждое из которых равно нулю, равна нулю. Поэтому верно равенство 0 n = 0.

Чтобы переместительное свойство умножения было верно при n = 1 и n = 0, условились, что m 1 = m и m 0 = 0.

Перед буквенными множителями обычно не пишут знак умножения: вместо 8 х пишут 8х , вместо а b пишут а b .

Опускают знак умножения и перед скобками. Например, вместо 2 (а + b ) пишут 2(а+ b ) , а вместо (х + 2) (у + 3) пишут (х + 2) (у + 3).

Вместо (ab ) с пишут abc .

Когда в записи произведения нет скобок, умножение выполняют по порядку слева направо.

Произведения читают, называя каждый множитель в родительном падеже. Например:

1) 175 60 – произведение ста семидесяти пяти и шестидесяти;

2) 80 (х + 1 7) – произведение р.п. р.п.

восьмидесяти и суммы икс и семнадцати

Решим задачу.

Сколько трехзначных чисел (рис. 46) можно составить из цифр 2, 4, 6, 8, если цифры в записи числа не повторяются?

Решение.

Первой цифрой числа может быть любая из четырех данных цифр, второй – любая из трех других, а третьей – любая из двух оставшихся. Получается:

Рис. 46. К задаче о составлении трехзначных чисел

Всего из данных цифр можно составить 4 3 2 = 24 трехзначных числа.

Решим задачу.

В правление фирмы входят 5 человек. Из своего состава правление должно выбрать президента и вице-президента. Сколькими способами это можно сделать?

Решение.

Президентом фирмы можно избрать одного из 5 человек:

Президент:

После того как президент избран, вице-президентом можно выбрать любого из четырех оставшихся членов правления (рис. 47):

Президент:

Вице-президент:


Рис. 47. К задаче о выборах

Значит, выбрать президента можно пятью способами, и для каждого выбранного президента четырьмя способами можно выбрать вице-президента. Следовательно, общее число способов выбрать президента и вице-президента фирмы равно: 5 4 = 20 (см. рис. 47).

Решим еще задачу.

Из села Аникеево в село Большово ведут четыре дороги, а из села Большово в село Виноградове – три дороги (рис. 48). Сколькими способами можно добраться из Аникеева в Виноградове через село Большово?

Рис. 48. К задаче о дорогах

Решение.

Если из А в Б добираться по 1-й дороге, то продолжить путь есть три способа (рис. 49).

Рис. 49. Варианты пути

Точно так же рассуждая, получаем по три способа продолжить путь, начав добираться и по 2-й, и по 3-й, и по 4-й дороге. Значит, всего получается 4 3 = 12 способов добраться из Аникеева в Виноградове.

Решим еще одну задачу.

Семье, состоящей из бабушки, папы, мамы, дочери и сына, подарили 5 разных чашек. Сколькими способами можно разделить чашки между членами семьи?

Решение . У первого члена семьи (например, бабушки) есть 5 вариантов выбора, у следующего (пусть это будет папа) остается 4 варианта выбора. Следующий (например, мама) будет выбирать уже из 3 чашек, следующий – из двух, последний же получает одну оставшуюся чашку. Покажем эти способы на схеме (рис. 50).

Рис. 50. Схема к решению задачи

Получили, что каждому выбору чашки бабушкой соответствует четыре возможных выбора папы, т.е. всего 5 4 способов. После того как папа выбрал чашку, у мамы есть три варианта выбора, у дочери – два, у сына – один, т.е. всего 3 2 1 способов. Окончательно получаем, что для решения задачи надо найти произведение 5 4 3 2 1.

Заметим, что получили произведение всех натуральных чисел от 1 до 5. Такие произведения записывают короче:

5 4 3 2 1 = 5! (читают: «пять факториал»).

Факториал числа – произведение всех натуральных чисел от 1 до этого числа.

Итак, ответ задачи: 5! = 120, т.е. чашки между членами семьи можно распределить ста двадцатью способами.

Для решения многих задач "на максимум и минимум", т.е. на разыскание наибольшего и наименьшего значений переменной величины, можно успешно пользоваться некоторыми алгебраическими утверждениями, с которыми мы сейчас познакомимся.

x · y

Рассмотрим следующую задачу:

На какие две части надо разбить данное число, чтобы произведение их было наибольшим?

Пусть данное число а . Тогда части, на которые разбито число а , можно обозначить через

а / 2 + x и a / 2 - x ;

число х показывает, на какую величину эти части отличаются от половины числа а . Произведение обеих частей равно

( а / 2 + x ) · ( a / 2 - x ) = a 2 / 4 - x 2 .

Ясно, что произведение взятых частей будет увеличиваться при уменьшении х , т.е. при уменьшении разности между этими частями. Наибольшим произведение будет при x = 0 , т.е. в случае, когда обе части равны a / 2 .

Итак,

произведение двух чисел, сумма которых неизменна, будет наибольшим тогда, когда эти числа равны между собой.

x · y · z

Рассмотрим тот же вопрос для трех чисел.

На какие три части надо разбить данное число, чтобы произведение их было наибольшим?

При решении этой задачи будем опираться на предыдущую.

Пусть число а разбито на три части. Предположим сначала, что ни одна из частей не равна a / 3 .Тогда среди них найдется часть, большая a / 3 (все три не могут быть меньше a / 3 ); обозначим ее через

a / 3 + x .

Точно так же среди них найдется часть, меньшая a / 3 ; обозначим ее через

a / 3 - y .

Числа х и у положительны. Третья часть будет, очевидно, равна

a / 3 + y - x .

Числа a / 3 и a / 3 + x - y имеют ту же сумму, что и первые две части числа а , а разность между ними, т.е. х - y , меньше, чем разность между первыми двумя частями, которая была равна х + y . Как мы знаем из решения предыдущей задачи, отсюда следует, что произведение

a / 3 · ( a / 3 + x - y )

больше, чем произведение первых двух частей числа а .

Итак, если первые две части числа а заменить числами

a / 3 и a / 3 + x - y ,

а третью оставить без изменения, то произведение увеличится.

Пусть теперь одна из частей уже равна a / 3 . Тогда две другие имеют вид

a / 3 + z и a / 3 - z .

Если мы эти две последние части сделаем равными a / 3 (отчего сумма их не изменится), то произведение снова увеличится и станет равным

a / 3 · a / 3 · a / 3 = a 3 / 27 .

Итак,

если число а разбито на 3 части, не равные между собой, то произведение этих частей меньше чем а 3 / 27 , т.е. чем произведение трех равных сомножителей, в сумме составляющих а .

Подобным же образом можно доказать эту теорему и для четырех множителей, для пяти и т.д.

x p · y q

Рассмотрим теперь более общий случай.

При каких значениях х и y выражение х p у q наибольшее, если х + y = а ?

Надо найти, при каком значении х выражение

х р · (а - х ) q

достигает наибольшей величины.

Умножим это выражение на число 1 / р p q q . Получим новое выражение

x p / p p · (a - x ) q / q q ,

которое, очевидно, достигает наибольшей величины тогда же, когда и первоначальное.

Представим полученное сейчас выражение в виде

(a - x ) / q · (a - x ) / q · ... · (a - x ) / q ,

где множители первого вида повторяются p раз, а второго - q раз.

Сумма всех множителей этого выражения равна

x / p + x / p + ... + x / p + (a - x ) / q + (a - x ) / q + ... + (a - x ) / q =

= px / p + q ( a - x ) / q = x + a - x = a ,

т.е. величине постоянной.

На основании ранее доказанного заключаем, что произведение

x / p · x / p · ... · x / p · (a - x ) / q · (a - x ) / q · ... · (a - x ) / q

достигает максимума при равенстве всех его отдельных множителей, т.е. когда

x / p = (a - x ) / q .

Зная, что а - х = y , получаем, переставив члены, пропорцию

x / y = p / q .

Итак,

произведение х p y q при постоянстве суммы х + у достигает наибольшей величины тогда, когда

x: y = p: q .

Таким же образом можно доказать, что

произведения

x p y q z r , x p y q z r t u и т.п.

при постоянстве сумм x + y + z , x + y + z + t и т.д. достигают наибольшей величины тогда, когда

х: у: z = p: q: r , х: у: z: t = p: q: r: u и т.д.

Разберем понятие умножение на примере:

Туристы находились в пути три дня. Каждый день они проходили одинаковый путь по 4200 м. Какое расстояние они прошли за три дня? Решите задачу двумя способами.

Решение:
Рассмотрим задачу подробно.

В первый день туристы прошли 4200м. Во-второй день тот же самый путь прошли туристы 4200м и в третий день – 4200м. Запишем математическим языком:
4200+4200+4200=12600м.
Мы видим закономерность число 4200 повторяется три раза, следовательно, можно сумму заменить умножением:
4200⋅3=12600м.
Ответ: туристы за три дня прошли 12600 метров.

Рассмотрим пример:

Чтобы нам не писать длинную запись можно записать ее в виде умножения. Число 2 повторяется 11 раз поэтому пример с умножением будет выглядеть так:
2⋅11=22

Подведем итог. Что такое умножение?

Умножение – это действие заменяющее повторение n раз слагаемого m.

Запись m⋅n и результат этого выражения называют произведением чисел , а числа m и n называют множителями .

Рассмотрим сказанное на примере:
7⋅12=84
Выражение 7⋅12 и результат 84 называются произведением чисел .
Числа 7 и 12 называются множителями .

В математике есть несколько законов умножения. Рассмотрим их:

Переместительный закон умножения.

Рассмотрим задачу:

Мы отдали по два яблока 5 своим друзьям. Математически запись будет выглядеть так: 2⋅5.
Или мы отдали по 5 яблок двум своим друзьям. Математически запись будет выглядеть так: 5⋅2.
В первом и втором случаем мы раздадим одинаковое количество яблок равное 10 штукам.

Если мы умножим 2⋅5=10 и 5⋅2=10, то результат не поменяется.

Свойство переместительного закона умножения:
От перемены мест множителей произведение не меняется.
m n =n⋅ m

Сочетательный закон умножения.

Рассмотрим на примере:

(2⋅3)⋅4=6⋅4=24 или 2⋅(3⋅4)=2⋅12=24 получим,
(2⋅3)⋅4=2⋅(3⋅4)
(a b ) ⋅ c = a ⋅(b c )

Свойство сочетательного закона умножения:
Чтобы число умно­жить на про­из­ве­де­ние двух чисел, можно его сна­ча­ла умно­жить на пер­вый мно­жи­тель, а затем по­лу­чен­ное про­из­ве­де­ние умно­жить на вто­рой.

Меняя несколько множителей местами и заключая их в скобки, результат или произведение не изменится.

Эти законы верны для любых натуральных чисел.

Умножение любого натурального числа на единицу.

Рассмотрим пример:
7⋅1=7 или 1⋅7=7
a ⋅1=a или 1⋅ a = a
При умножении любого натурального числа на единицу произведением будет всегда тоже число.

Умножение любого натурального числа на нуль.

6⋅0=0 или 0⋅6=0
a ⋅0=0 или 0⋅ a =0
При умножении любого натурального числа на нуль произведение будет равно нулю.

Вопросы к теме “Умножение”:

Что такое произведение чисел?
Ответ: произведением чисел или умножение чисел называется выражение m⋅n, где m – слагаемое, а n – число повторений этого слагаемого.

Для чего нужно умножение?
Ответ: чтобы не писать длинное сложение чисел, а писать сокращенно. Например, 3+3+3+3+3+3=3⋅6=18

Что является результатом умножения?
Ответ: значение произведения.

Что означает запись умножения 3⋅5?
Ответ: 3⋅5=5+5+5=3+3+3+3+3=15

Если умножить миллион на нуль, чему будет равно произведение?
Ответ: 0

Пример №1:
Замените сумму произведением: а) 12+12+12+12+12 б)3+3+3+3+3+3+3+3+3
Ответ: а)12⋅5=60 б) 3⋅9=27

Пример №2:
Запишите в виде произведения: а) а+а+а+а б) с+с+с+с+с+с+с
Решение:
а)а+а+а+а=4⋅а
б) с+с+с+с+с+с+с=7⋅с

Задача №1:
Мама купила 3 коробки конфет. В каждой коробке по 8 конфет. Сколько конфет купила мама?
Решение:
В одной коробке 8 конфет, а у нас таких коробок 3 штуки.
8+8+8=8⋅3=24 конфеты
Ответ: 24 конфеты.

Задача №2:
Учительница рисования сказала приготовить своим восемью ученикам по семь карандашей на урок. Сколько всего карандашей вместе было у детей?
Решение:
Можно посчитать суммой задачу. У первого ученика было 7 карандашей, у второго ученика было 7 карандашей и т.д.
7+7+7+7+7+7+7+7=56
Запись получилась неудобная и длинная, заменим сумму на произведение.
7⋅8=56
Ответ 56 карандашей.

Загрузка...
Top