Чем можно утеплить дом из газобетона снаружи? Точка росы. расчет, определение Внутренняя отделка газобетона

Определить точку росы в стене очень просто. Ниже будет приведен пример, как сделать расчет. Это может сделать каждый, кто заинтересован в вопросе правильного утепления.

Точка росы — это температура, при которой водяной пар начинает конденсироваться.

Что такое точка росы

Точка росы в стене может перемещаться по ее толщине при изменении температур внутри помещения и снаружи. Например, если внутри помещения стабильная температура, а на улице похолодало, то точка росы передвинется по толщине стены ближе к помещению.

Температура предмета, на котором начнет конденсироваться пар, т.е. точка росы, зависит в основном от двух параметров:

  • температуры воздуха;
  • влажности воздуха.

Например, при температуре внутри помещения +20 град и влажности 50%, температура точки росы будет (примерно) +12,9 градусов. Если в помещении появится предмет с такой температурой или ниже, то на нем образуется конденсат.

Например, когда открывается холодильник, то внутри него выпадает роса из поступающего теплого воздуха. Она выглядит как «туман идущий из холодильника».

Если на улице холодно, то где-то в стене будет температура, при которой начнется конденсация пара, и в этой точке будет увлажнение. Если стена тонкая, «холодная», и ее внутренняя поверхность охладится до 12,9 градусов или меньше (при указанных значениях температуры и влажности воздуха), то на ней выпадет роса, она станет мокрой, и очень быстро обзаведется плесенью.

При утеплении стен, конструкций дома, полезно сделать расчет точки росы для наибольших и наименьших значений влажности и температуры, чтобы знать в каких границах пространства будет перемещаться точка росы при изменении этих параметров.

Как выполняется расчет

В расчетах точки росы и толщины утепления не учитываются некоторые параметры, — давление, скорость движения воздуха, плотность материала… Поэтому говорить можно только о приближенных значениях. Но, это не критично, когда речь идет об определении толщины утеплителя.

Для определения точки росы в стене проще всего воспользоваться таблицами готовых примерных значений, и не пытаться самостоятельно заниматься расчетами. Тем более не стоит доверять самодельным программам из интернета, они часто не учитывают параметры и выдают ложные значения, а иногда — и по принципу случайных чисел.

Ниже приведена таблица расчетных значений точки росы в зависимости от температуры воздуха и его влажности. Это примерные значения, так как не учитывается влияние других факторов.

Например, можно определить, что для помещения с температурой внутри +22 градуса, и влажностью 60%, температура при которой будет конденсироваться водяной пар (точка росы) составит 13,9 градусов.

Стена с утеплителем — как определить место конденсации

Решить задачу нахождения точки росы в стене очень просто.
Нужно знать:

  • коэффициент теплового сопротивления стены, ?1, Вт/(м К);
  • коэффициент теплового сопротивления утеплителя, ?2, Вт/(м К);
  • толщину стены, h1, м;
  • толщину утеплителя, h2, м;
  • температуру внутри помещения, t1,град. С;
  • влажность воздуха, который будет доходить до точки росы, %;
  • точку росы для данных температуры и влажности, град. С;
  • температуру снаружи, t2, град. С.

В грубом приближении принимается, что температура по толщине каждого слоя будет изменяться линейно.

Искомая величина — температура на границе слоев стены и утеплителя. Когда она будет найдена, можно построить график изменения температур в слое «стена-утеплитель» и по нему отыскать положение точки росы.

Для этого находится отношение теплового сопротивления стены к тепловому сопротивлению утеплителя, исходя из которого, определяется изменение температуры в одном из слоев, что даст возможность узнать температуру на границе.

Рассмотрим на примере.

Пример расчета

Пример условий следующий.
Железобетонная стена h1=36 см, утеплена пенопластом h2=10 см. Коэффициент теплового сопротивления железобетона?1=1,7 Вт/смК, пенопласта — ?2= 0,04 Вт/смК. Температура внутри t1=+20 град, снаружи t2=-10 градусов. Влажность внутри помещения и снаружи принимается одинаковой — 50%. Согласно таблицы, точка росы составит 9,3 градусов.


Тепловые сопротивления стены и утеплителя определяются как h/ ?, вт/м2К.
В данном примере тепловое сопротивление стены составит 0,36/1,7=0,21 вт/м2К., утеплителя 0,1/0,04= 2,5 вт/м2К.

Отношение тепловых сопротивлений первого слоя ко второму (стены к пенопласту) составит: n=0,21/2,5=0,084.
Тогда перепад температур в первом слое (стена) составит, Т= t1- t2хn = 20-(-10)х0,084=2,52 град.

Соответственно температура на границе слоя будет равна t1-Т=20-2,52=17,48 град.

Теперь мы можем в масштабе построить примерный график перепадов температуры в слое стена — утеплитель и отметим на нем точку росы.

Из примерных расчетов и примерного графика можно узнать главное – точка росы находится в утеплителе, далеко от стены, т.е. даже ухудшение условий, с учетом погрешности расчетов, не повлечет пагубного увлажнения стены.

Пример определения места нахождения температуры конденсации внутри стены

Температура внутри +22 град, снаружи — 15 град (регион севернее), влажность — 50%, точка росы — 11,1 градусов. Стена толщиной 38 см из кирпича (1,5 кирпича +шов+штукатурка принимается все как «кирпичная кладка»).

Коэффициент теплового сопротивления для кирпичной кладки — 0,7 Вт/смК, для минеральной ваты — 0,05 Вт/смК (с учетом ее увлажнения в реальных условиях эксплуатации).

Тепловое сопротивление стены: 0,38/0,7=0,54 вт/м2К., утеплителя 0,1/0,05= 2,0 вт/м2К.
Отношение тепловых сопротивлений первого слоя ко второму составит: n=0,54/2,0=0,27 , а перепад температур в пределах первого слоя будет Т= 22 — (-15)х0,27=9,99 град. Температура на границе слоев: 22- 9,99=12 град.

Как видим, ситуация «впритык». С повышением влажности, что обычное явление, с падением температуры внутри помещения, или в холодную зиму, точка росы будет «гулять» внутри стены.

Такое утепление для относительно «теплой» кирпичной стены, уже будет считаться недостаточным, и по положению точки росы и по нормативным значениям теплопотерь, через ограждающие конструкции.

Точку росы можно сдвинуть и нагревом помещения с помощью внутреннего отопления и его осушением. Естественно, что это крайняя мера, которую применяют лишь когда пришла пора «сушить стены».
Точка росы в стене — расчет и нахождение

Какие значения нужно принимать для расчета

Обычно температура внутри помещения принимается 22 градуса, чаще у пола она ниже, а под потолком достигает 27 градусов. Для центральных регионов считается минимальной температура снаружи помещений -15 градусов, (допускается кратковременные понижения температуры до -20 — -25 градусов).

Для южных регионов — -7 градусов, с кратковременным понижением -15 — -20 градусов.
(Минимальную температуру можно выбрать самостоятельно, — какая температура держится зимой постоянно? До каких значений она опускается кратковременно?)

Влажность воздуха в помещении обычно принимается средняя (но не маленькая) — 50%,. Здесь обычно имеется некоторый запас, так как часто зимой воздух в помещении суше, из-за активно работающего отопления, — 30 – 40%. Но во многих домах борются с сухостью воздуха, устанавливая увлажнители и разводя растения. Оптимальная же влажность – 50%, она же и расчетная.

Осенью и весной для пропускных утеплителей пар будет идти в обратном направлении — с улицы. Для расчета на «демисезон» по паропроницаемым утеплителям, влажность нужно принимать порядка 90%.

Где должна находиться точка росы

Утепление ограждения считается «нормальным» только когда точка росы в холодное время в основном (!) находится в утеплителе и не смещается в стену.

Что значит «в основном»?
При максимальных отрицательных температурах, которые длятся обычно несколько дней, неделю, и наступают периодически, точка росы может смещаться и в стену.

Для стены из плотных тяжелых материалов, в этом нет ничего опасного. Но для стены из пористых материалов, которые как обычно очень хорошо пропускают пар и впитывают влагу, появление точки росы должны быть коротким, особенно когда они сочетаются с утеплителями-пароизоляторами.

Такие стены требуют наибольшего утепления, особенно с учетом того, что они сами по себе теплые. Что бы сместить точку росы потребуется в 2 раза больше утеплителя. С паропрозрачными утеплителями, они сочетаются намного лучше, так как здесь можно осуществить вывод влаги, но только при условии отличной вентиляции утеплителя.

Приведены наглядные графики температур для различных схем утепления. Точка росы примерно указана как 16 градусов, достигается, когда внутри дома особо комфортная обстановка +25 градусов, 55 – 60 % влажности.

  • 1 — стена без утеплителя;
  • 2 — недостаточный слой утепления — точка росы находится внутри стены. Ее постоянное нахождение вызовет намокание неплотной стены, нездоровую атмосферу, опасность разрушения материала, если стена слой утепления имеет большее сопротивление движению пара, чем сама стена (неправильное утепление);
  • 3 — достаточное утепление, точка росы в утеплителе (основное время), нормальное сохранение материалов стены и тепло в доме, если тепловое сопротивление конструкции не меньше нормативного, ведь для очень холодных стен сместить точку росы из них можно и маленьким слоем утепления ;
  • 4 — внутреннее утепление – худшее решение. Точка росы на поверхности стены или близка к этому, влечет намокание стены, и ущерб здоровью жильцов, мокрое замораживание и разрушение конструкций. Применяется в безвыходных ситуациях при условии сплошного закрытия стены утеплителем-пароизолятором, который и предотвращает проникновение пара к точке росы. Т.е. образование конденсата невозможно из-за влажности близкой к 0.

В нормативах указаны тепловые сопротивления ограждающих поверхностей для конкретных климатических зон. Этот значением уменьшать запрещает нам государство.

Чаще норматив требует меньшую толщину утеплителя, чем та, что нужна для смещения точки росы в утеплитель. Поэтому подбирать утеплитель под все поверхности в принципе желательно и по условию смещения точки росы в утеплитель.

Эти значения сравниваются с нормативным требованием, а принимается, как правило, еще большее значение, кратное толщине утеплителей, который находится в продаже.

Для того чтобы понять, к каким последствиям приведёт отсутствие вентилируемого зазора в стенах, выполненных из двух и более слоев разных материалов, и всегда ли нужны зазоры в стенах, необходимо напомнить о физических процессах, происходящих в наружной стене в случае разности температур на её внутренней и наружной поверхностях.

Как известно в воздухе всегда содержатся водяные пары. Парциальное давление пара зависит от температуры воздуха. С повышением температуры парциальное давление водяных паров увеличивается.

В холодное время года парциальное давление паров внутри помещения значительно выше, чем снаружи. Под действием разницы давлений водяные пары стремятся попасть изнутри дома в область меньшего давления, т.е. на сторону слоя материала с меньшей температурой — на наружную поверхность стены.

Также известно, что при охлаждении воздуха водяной пар, содержащийся в нём, достигает предельного насыщения, после чего конденсируется в росу.

Точка росы – это температура, до которой должен охладиться воздух, чтобы содержащийся в нём пар достиг состояния насыщения и начал конденсироваться в росу.

На приведённой диаграмме, Рис.1., представлено максимально возможное содержание водяного пара в воздухе в зависимости от температуры.

Отношение массовой доли водяного пара в воздухе к максимально возможной доле при данной температуре называется относительной влажностью, измеряемой в процентах.

Например, если температура воздуха составляет 20 °С , а влажность – 50%, это означает, что в воздухе содержится 50% того максимального количества воды, которое может там находится.

Как известно строительные материалы обладают разной способностью пропускать содержащиеся в воздухе водяные пары, под действием разности их парциальных давлений. Это свойство материалов называется сопротивление паропроницанию, измеряется в м2*час*Па/мг .

Кратко резюмируя вышесказанное, в зимний период воздушные массы, в состав которых входят водяные пары, будут проходить сквозь паропроницаемую конструкцию внешней стены изнутри наружу.

Температура воздушной массы будет уменьшаться по мере приближения к внешней поверхности стены.

В сухой стене — пароизоляция и вентилируемый зазор

Точка росы в правильно спроектированной стене без утеплителя окажется в толще стены, ближе к наружной поверхности, где пар будет конденсироваться и увлажнять стену.

Зимой, в результате превращения пара в воду на границе конденсации, наружная поверхность стены будет накапливать влагу.

В теплое время года эта накопленная влага должна иметь возможность испариться.

Необходимо обеспечивать смещение баланса между количеством поступающих в стену паров изнутри помещения и испарением из стены накопившейся влаги в сторону испарения.

Баланс влагонакопления в стене можно смещать в сторону удаления влаги двумя путями:

  1. Уменьшать паропроницаемость внутренних слоев стены, сокращая тем самым количество пара в стене.
  2. И (или) увеличивать испарительную способность наружной поверхности на границе конденсации.

Имеют одинаковое сопротивление паропроницанию по всей толщине, а также равномерное изменение температуры по толщине стены. Граница конденсации водяных паров в правильно спроектированной стене без утеплителя находится в толще стены, ближе к наружной поверхности. Это обеспечивает таким стенам положительный баланс удаления влаги из толщи стены во всех случаях, кроме помещений с повышенной влажностью.

В многослойных стенах с утеплителем используются материалы с разным сопротивлением паропроницанию. Кроме того, распределение температуры в толще многослойной стены не равномерное. На границе слоев в толще стены имеем резкие перепады температуры.

Чтобы обеспечить требуемый баланс перемещения влаги в многослойной стене необходимо, чтобы сопротивление паропроницанию материала в стене уменьшалось по направлению от внутренней поверхности к наружной.

В противном случае, если наружный слой будет иметь большее сопротивление паропроницанию, баланс влагоперемещения сместится в сторону накопления влаги в стене.

Например.

Сопротивление паропроницанию газобетона значительно меньше, чем у керамики. При фасадной отделке дома из газобетона керамическим кирпичом обязателен вентилируемый зазор между слоями. При отсутствии зазора блоки будут накапливать влагу .

Вентилируемый зазор между лицевой кладкой из керамического кирпича и несущей стеной из керамзитобетонных блоков не нужен, т.к. сопротивление паропроницанию кирпичной облицовки меньше, чем у стены из керамзитобетонных блоков.

При неправильном устройстве стены, влага в утеплителе будет накапливаться постепенно.

Уже на второй, максимум третий-пятый отопительный период, можно будет ощутить существенное увеличение расходов на отопление. Связано это, естественно, с тем, что увеличилась влажность теплоизоляционного слоя и всей конструкции в целом, а соответственно существенно снизился показатель термического сопротивления стены.

Влага из утеплителя будет передаваться и в соседние слои стены. На внутренней поверхности наружных стен может образовываться грибок и плесень.

Кроме накопления влаги, в утеплителе стены происходит еще один процесс — замерзание сконденсировавшейся влаги. Известно, что периодическое замерзание и оттаивание большого количества воды в толще материала разрушает его.

Стеновые материалы различаются по своей способности противостоять замерзанию конденсата. Поэтому, в зависимости от паропроницаемости и морозостойкости утеплителя, необходимо ограничивать общее количество конденсата, накапливающегося в утеплителе за зимний период.

Например, минераловатный утеплитель имеет высокую паропроницаемость и очень низкую морозостойкость. В конструкциях с минераловатным утеплителем (стены, чердачные и цокольные перекрытия, мансардные крыши) для уменьшения поступления пара в конструкцию со стороны помещения всегда укладывают паронепроницаемую пленку.

Без пленки стена имела бы слишком малое сопротивление паропроницанию и, как следствие, в толще утеплителя выделялось и замерзало бы большое количество воды. Утеплитель в такой стене через 5-7 лет эксплуатации здания превратился бы в труху и осыпался.

Толщина теплоизоляции должна быть достаточной для того, чтобы удерживать точку росы в толще утеплителя, рис.2а.

При малой толщине утеплителя температура точки росы окажется на внутренней поверхности стены и пары будут конденсироваться уже на внутренней поверхности наружной стены, рис.2б.

Понятно, что количество влаги, сконденсировавшейся в утеплителе, будет увеличиваться с ростом влажности воздуха в помещении и с увеличением суровости зимнего климата в месте строительства.

Количество испаряемой из стены влаги в летнее время также зависит от климатических факторов — температуры и влажности воздуха в зоне строительства.

Как видим, процес перемещения влаги в толще стены зависит от многих факторов. Влажностный режим стен и других ограждений дома можно рассчитать, Рис. 3.

По результатам расчета определяют необходимость уменьшения паропроницаемости внутренних слоев стены или необходимость вентилируемого зазора на границе конденсации.

Результаты проведенных расчетов влажностного режима различных вариантов утепленных стен (кирпичные, ячеистобетонные, керамзитобетонные, деревянные) показывают, что в конструкциях с вентилируемым зазором на границе конденсации накопления влаги в ограждениях жилых зданий не происходит во всех климатических зонах России.

Многослойные стены без вентилируемого зазора необходимо применять, основываясь на расчете влагонакопления. Для принятия решения, следует обратиться за консультацией к местным специалистам, профессионально занимающимся проектированием и строительством жилых зданий. Результаты расчета влагонакопления типовых конструкций стен в месте строительства, местным строителям давно известны.

— это статья об особенностях влагонакопления и утепления стен из кирпича или каменных блоков.

Особенности влагонакопления в стенах с фасадным утеплением пенопластом, пенополистиролом

Утеплители из вспененных полимеров — пенопласта, пенополистирола, пенополиуретана, обладают очень низкой паропроницаемостью. Слой плит утеплителя из этих материалов на фасаде служит барьером для пара. Конденсация пара может происходить только на границе утеплителя и стены. Слой утеплителя препятствует высыханию конденсата в стене.

Для предотвращения накопления влаги в стене с полимерным утеплителем необходимо исключить конденсацию пара на границе стены и утеплителя . Как это сделать? Для этого необходимо сделать так, чтобы на границе стены и утеплителя температура всегда, в любые морозы, была бы выше температуры точки росы.

Указанное выше условие распределения температур в стене обычно легко выполняется, если сопротивление теплопередаче слоя утеплителя будет заметно больше, чем у утепляемой стены. Например, утепление «холодной» кирпичной стены дома пенопластом толщиной 100 мм. в климатических условиях средней полосы России обычно не приводит к накоплению влаги в стене.

Совсем другое дело, если пенопластом утепляется стена из «теплого» бруса, бревна, газобетона или поризованной керамики. А также, если для кирпичной стены выбрать очень тонкий полимерный утеплитель. В этих случаях температура на границе слоев может легко оказаться ниже точки росы и, чтобы убедиться в отсутствии влагонакопления, лучше выполнить соответствующий расчет.

Выше на рисунке показан график распределения температуры в утепленной стене для случая, когда сопротивление теплопередаче стены больше, чем слоя утеплителя. Например, если стену из газобетона с толщиной кладки 400 мм. утеплить пенопластом толщиной 50 мм. , то температура на границе с утеплителем зимой будет отрицательной. В результате будет происходить конденсация пара и накопление влаги в стене.

Толщину полимерного утеплителя выбирают в два этапа:

  1. Выбирают, исходя из необходимости обеспечить требуемое сопротивление теплопередаче наружной стены.
  2. Затем выполняют проверку на отсутствие конденсации пара в толще стены.

Если проверка по п.2. показывает обратное, то приходится увеличивать толщину утеплителя. Чем толще полимерный утеплитель - тем меньше риск конденсации пара и влагонакопления в материале стены. Но, это приводит к увеличению расходов на строительство.

Особенно большая разница в толщине утеплителя, выбранного по двум вышеуказанным условиям, имеет место при утеплении стен с высокой паропроницаемостью и низкой теплопроводностью. Толщина утеплителя для обеспечения энергосбережения получается для таких стен сравнительно маленькой, а для отсутствия конденсации - толщина плит должна быть неоправданно большой.

Поэтому, для утепления стен из материалов с высокой паропроницаемостью и низкой теплопроводностью выгоднее использовать минераловатные утеплители . Это относится прежде всего к стенам из дерева, газобетона, газосиликата, крупнопористого керамзитобетона.

Устройство пароизоляции изнутри обязательно для стен из материалов с высокой паропроницаемостью при любом варианте утепления и облицовки фасада.

Для устройства пароизоляции выполняют из материалов с высоким сопротивлением паропроницанию - на стену наносят грунтовку глубокого проникновения в несколько слоев, цементную штукатурку, виниловые обои или используют паронепроницаемую пленку.Опубликовано

Вы построили или купили собственный дом. Или только собираетесь это сделать, заранее планируя свои действия. Взвесили все «за» и «против» и пришли к выводу, что здание должно быть каменным, а стены возведены из теплого и эффективного материала: газобетона. Он же ячеистый бетон, газосиликат, пенобетон. Есть ли необходимость делать утепление стен из газобетона («термошубу»), и если да, то как его грамотно выполнить?

Видео-отчет о теплоизоляции дома из газобетона эковатой

Причины проведения утепления

Вроде бы очевидно: чтобы в доме было теплее, а расходы на отопление были ниже. Но ведь можно просто увеличить толщину стен? Жесткая минеральная вата, наиболее пригодная для утепления фасадов, при толщине плиты в 100 мм будет стоить (в центральных районах страны) в среднем 450 рублей за м 2 . По теплотехническим характеристикам это аналог ячеистого бетона толщиной в 300 мм. А он обойдется уже в 900 рублей. На самом деле, если посчитать всю конструкцию наружного утепления: минераловатные плиты, два слоя клея, крепеж, штукатурку, сетку, цена вырастет до 800 рублей за метр и практически сравняется со стоимостью повышения теплозащитных свойств стены за счет увеличения толщины кладки. Однако, под более толстую стену придется возводить более мощный и дорогой фундамент. «Термошуба» выходит все же выгоднее. Наиболее рациональный по соотношению цена/энергосбережение вариант для средней полосы России - фундамент толщиной 300 мм (желательно тоже утепленный); стены из газобетона 400 мм; утеплитель 100 мм.

Оптимальный вариант утепления: «термошуба» с применением жестких минераловатных плит толщиной 100 мм

Есть еще один немаловажный момент: долговечность и пресловутая точка росы. Наш континентальный климат недружелюбен по отношению к каменным строительным материалам. Влага, попадая во внутренние поры газобетона, в морозы замерзает, расширяется и понемногу разрывает стены. Это касается не только ячеистого бетона, но и кирпича, бетона. В наших краях каменный дом никогда не прослужит столько же, сколько, к примеру, в Южной Европе. Если бы Парфенон построили в Москве, он давно бы уже развалился на отдельные камушки. Продлить жизненный срок здания, чтобы в целости передать его правнукам, опять-таки, поможет наружное утепление.

В теплотехнике есть такое понятие: «точка росы». Это место в толще стенового материала с нулевой температурой. Именно в этой зоне конденсируется максимальное количество влаги и материал то замерзает, то оттаивает вновь. На вид и ощупь сухие блоки имеют среднюю влажность 5-8%. В ходе процесса оттаивания-замерзания эта вода понемногу, но неумолимо точит камень наших стен. Каков же выход?

Газобетон гидрофобен (впитывает влагу) и оставлять жилой дом на зиму неоштукатуренным не стоит, в нем будет сыро

Убрать точку росы из стены, сместить ее наружу. То есть, сделать так, чтобы газобетон постоянно находился в зоне положительных температур, тогда он прослужит ощутимо дольше. К тому же при правильной конструкции стена всегда будет сухой, что создаст здоровый микроклимат в доме. То, что точка росы полностью сместится в утеплитель, не беда. Во-первых, он на порядок менее подвержен разрушительным силам замерзающей воды. Во-вторых, в отличие от капитальной стены, утепление несложно реконструировать.

Выбираем метод: снаружи или изнутри

Мы уже упоминали о том, что дом следует утеплять снаружи. Но ведь сделать это изнутри дешевле, проще и быстрей? Так, да не так. Да, не нужно ставить леса. Да, можно применить дешевую мягкую стекловату и обшить стены гипсокартоном, сразу выполнив внутреннюю отделку. Да, можно работать под крышей зимой и в плохую погоду.

Увы, выполняя утепление изнутри, мы многое теряем. Во-первых, мы смещаем «точку росы» не наружу, а, наоборот, внутрь стены. Таким образом, лишь ухудшаем режим эксплуатации газобетона, снижаем долговечность здания. Во-вторых, практически в каждом сооружении имеются так называемые «мостики холода». В «теплых» стенах из ячеистых блоков тоже имеются «холодные» элементы: плиты перекрытия, армопояса, перемычки. Они более теплопроводны и по ним в дом проникает холод, а из дома улетучиваются деньги. Утепление стен из газобетона снаружи решает эту проблему. Дом, как в шубу, целиком помещают в теплоизолированную оболочку. Внутреннее утепление - как жабрацкий кафтан с прорехами: пузо в тепле, а зад мерзнет.

Обобщим: внутреннее утепление лишь частично решает проблемы, единственно верный вариант - наружный. Изнутри есть смысл утеплять, если другого выхода просто нет. К примеру, по неким причинам нет возможности изменить внешний вид фасада.

Для наружного утепления применяют жесткие минераловатные плиты

Какой материал лучше использовать

Извечный вопрос всех застройщиков: минвата или пенопласт? Минвата дороже, но лучше. Пенопласт дешевле, но хуже. Это как раки на Привозе: крупные - по пять рублей, мелкие - по три. Попробуем разобраться, чем же минвата лучше и стоит ли за нее переплачивать:

  • Минеральная вата и пенополистирол чрезвычайно схожи по теплотехническим характеристикам. Последний даже чуть эффективней. Механические свойства и долговечность также сильно не отличаются.
  • Мышки ненавидят минвату и обожают пенопласт. Если где-либо на поверхности пенополистирольных плит будет отсутствовать отделка, там тут же устроит себе уютную норку и поселится семейка Микки-Маусов. Но, если фасад укрыт штукатуркой полностью, этого не произойдет.
  • С пенопластом намного проще работать, он легче режется, случайные щели несложно устранить строительной пеной. Минераловатные плиты обрабатывать чуть сложнее и работать придется в защитных перчатках, очках и желательно респираторе.

Пенопласт дешевле, чем минвата

  • Минвата - материал абсолютно пожаробезопасный. Пенополистирол не поддерживает пламя, поджечь его не получится. Однако под воздействием огня выделяет отравляющие газы, подобные тем, что немцы применяли во время Первой Империалистической. На самом деле, если не разводить костров вдоль фасада и не обливать стены бензином, никаких проблем не будет.
  • А вот по паропроницаемости материалы различаются кардинально. И это важно. Газобетон обладает оптимальной паропроницаемостью. Внутри жилого дома постоянно выделяется довольно большое количество влаги. Готовка на кухне, стиральная машина, домашние цветы, влажная уборка. Да и сами люди через кожу и дыхание отдают влагу. Газобетон способен эту влагу поглощать и выводить через поры материала наружу. Вектор движения паров всегда направлен изнутри на улицу. Это явление называют «дыханием» стены и оно благотворно влияет на микроклимат. Кстати, ячеистый бетон по паропроницаемости уступает лишь древесине и считается одним из самых дружелюбных для человека строительных материалов.

Минеральная вата в полной мере поддерживает полезные свойства газобетона. Будучи еще более паропроницаемой, она не мешает стенам «дышать». Пенопласт же практически не пропускает паров. Дом, утепленный пенополистиролом, глухо запакован, как «ссобойка» в целлофановом пакете. Безусловно, проветрить комнаты можно, просто открыв форточку. Конечно, через стены в «нормальном» доме уходит в среднем лишь 8% влаги, остальное удаляет вентиляция. Однако влажность стен, утепленных пенопластом, все же повышается на 4-8%. Пусть незначительно, но из-за этого снижаются теплотехнические характеристики газобетона и ухудшается микроклимат жилья.

Минеральная вата предпочтительней для утепления газобетонных стен

Несомненно, минеральная вата обладает существенным преимуществом и является лучшим материалом для наружного утепления стен. Бесспорно, пенопласт кардинально дешевле и тоже служит хорошим утеплителем. Вывод: если бюджет позволяет, лучше использовать минвату. Если «финансы поют романсы», можно утеплить дом и пенопластом.

Какова должна быть толщина утеплителя

Нередко приходится видеть, как люди утепляют свои дома тонкими плитами по 4, 3 и даже 2 сантиметра. Это большая ошибка. Даже применение самых распространенных 5-сантиметровых плит и то не очень оправдано.

Чем толще слой утеплителя, тем теплее будет в доме и меньше расходы на газ или дровишки. Это понимают все. Но не всем ясно, что при уменьшении толщины утеплителя на целых 40% (с 5 до 3 см) общая экономия на конструкции составит лишь смешные 10%. Ведь стоимость клея, штукатурки, сетки, крепежа и работы почти не зависит от толщины утеплителя и не может быть существенно уменьшена. Именно поэтому нет ничего глупее, чем вкладываться в сопутствующие материалы и экономить на главном - толщине утеплителя. Оптимальное, экономически оправданное утепление газобетонных стен для центральных районов России - плита 10 см. Применять материал толщиной менее 5 см вообще не имеет смысла.

«Мокрое» и «сухое» утепление

Не будем подробно расписывать существующие методы утепления. Производители разрабатывают комплексные технологии и в помощь исполнителям создают понятные, очень подробные и отлично иллюстрированные руководства. Их можно получить у продавцов материалов или скачать в сети с оригинальных сайтов. Упомянем лишь, что инструкции писаны не просто так, и технологии требуется выполнять неукоснительно. Также не стоит пытаться заменить какие-либо материалы из комплексных систем на более дешевые. К примеру, встречается, что вместо специальных клеевых и штукатурных составов для утепления применяют самый дешевый плиточный клей. Да, он приклеит плиты, но срок службы и паропроницаемость будут значительно ниже, чем у «правильного» состава.

  • «Мокрая» система легкая

На самом деле при так называемой «мокрой» технологии фасад остается совершенно сухим. Утеплитель фиксируют к стене клеем и дюбелями с большой шляпкой. Затем наносят два тонких выравнивающих слоя штукатурки, между ними размещают армирующую пластиковую сетку. Газобетонные стены ровные, готовить их не нужно, только удалить пыль. Отделка - декоративная штукатурка или легкие облицовочные плитки из пористой керамики либо бетона.

Один из вариантов «мокрой» системы. На дюбелях, уголках и сетке экономить нельзя.

  • «Мокрая» система тяжелая

Если очень хочется облицевать фасад камнем либо тяжелыми керамическими плитами, придется применить «тяжелую» технологию. В этом случае утеплитель не клеят, а крепят к стене мощными крюками, сверху размещают прочную металлическую сетку и фиксируют конструкцию металлическими пластинами. По сетке выполняется толстый (20-40 мм) слой цементно-песчаной штукатурки. Теперь можно класть камень. Такая система обходится ощутимо дороже «легкой».

  • «Сухая» система

Ее еще называют вентилируемым или навесным фасадом. Предполагает устройство каркаса снаружи фасада, металлического либо деревянного. В промежутках между его элементами размещают утеплитель - недорогую мягкую минвату или еще более дешевую стекловату, пенопласт. Обшивают каркас различными материалами: чаще это пластиковый либо металлический сайдинг, деревянная обшивочная доска. Навесные фасады из керамогранитных либо каменных плит, цветного стекла дороги и для жилых домов применяются нечасто. «Сухой» фасад, если не использовать дорогостоящие виды облицовки, стоит дешевле, но менее привлекателен с эстетической точки зрения.

Нужно не забыть оставить воздушный зазор не менее 2 см между утеплителем и сайдингом, чтобы стены имели возможность «дышать»

  • Облицовка кирпичом

Последний вариант - обложить фасад кирпичом. В этом случае и каркас не нужен, утеплитель можно крепить прямо к стене. Следует оставить воздушный зазор для вентиляции утеплителя. Кирпич и неизбежное утолщение фундамента обойдется в копеечку.

Чтобы кирпичная облицовка не рухнула, ее крепят к основной стене анкерами

Если подвести итог, получим следующее: оптимальное с точки зрения соотношений цена/эффективность/эстетика решение для умеренных климатических зон России - наружное утепление газобетонных стен минераловатными плитами толщиной 10 см по «мокрой» технологии. Приемлемые бюджетные варианты - «мокрый» пенопластовый фасад либо пенополистирол + пластиковый сайдинг. Грамотно выполненное утепление наружных стен позволит снизить расходы на отопление примерно вдвое.

Вопрос о необходимости утепления стен, сложенных из газобетона, возникает в силу того, что в большинстве регинов из-за низких зимних температур теплосопротивление этого материала недостаточно для нормативных значений.

Кроме того, в результате явления конденсации влаги в толще газобетона его теплосопротивление еще больше снижается и сокращается срок службы.

Чтобы разобраться с конденсированием воды в стене, вспомним, что вообще в ней происходит. Вода в природе может иметь три состояния. Это жидкое состояние - реки моря и океаны, вода в водопроводе, - твердое - снег и ледники - и еще газообразное - это пары влаги в воздухе. Водяной пар - это не облака и не туман, это молекулы воды, содержащиеся наряду с другими молекулами газов в воздухе. А облака и туман - это уже сконденсировавшаяся из воздуха влага.

Практически любая стена жилого дома обладает определенной воздухопроницаемостью, что свидетельствует о том, что в ее толще присутствует воздух. А раз присутствует воздух, то присутствуют вместе с ним и водяные пары. И эти пары, эти молекулы воды стремятся переместиться туда, где свободнее, где влажность воздуха ниже.

Таким образом, через стены постоянно происходит движение этих паров влаги. Зимой, когда влажность наружного воздуха низка, водяные пары перемещаются в воздухе стены изнутри наружу. А летом, если влажность наружного воздуха повышается настолько, что становится выше влажности внутри дома - наоборот, от наружной поверхности стены вовнутрь.

Это и есть тот процесс, который называется дыханием стены. Не надо путать его с движением воздуха через стены. Воздух в стене практически неподвижен, так как атмосферное давление одинаково и в доме, и за бортом.

Вспомним теперь, что такое точка росы, то есть, температура, при которой водяной пар в насыщенном состоянии начинает выпадать в виде конденсата, превращается из газообразного состояния в жидкое. Эта точка росы зависит в первую очередь от насыщенности воздуха водяными парами, о чем можно посмотреть в этомвидеоролике .

Примеры утепления стен с расчетными графиками показаны в прилагаемом ролике. Понятно, что в этих расчетах не учитывались другие конструктивные элементы, штукатурки, мембраны и облицовки, важно было лишь сравнить различные утеплители в применении их с газобетоном.

Но особенно важно было понять, как влияет коэффициент паропроницаемости утеплителя на его работу. И всеми этими примерами полностью подтверждается правило построения многослойной стены: коэффициент паропроницаемости каждого слоя должен увеличиваться в направлении от внутренней поверхности конструкции к наружной.

И еще об увлажнении. Мы ведь только что видели, что увлажнения стены, как такового, совсем избежать невозможно. Разные утеплители ведут себя по разному, но у каждого есть та температура наружного воздуха, при которой выпадение конденсата в стене неизбежно начинается.

И выбирать надо такую конструкцию, при которой это увлажнение было бы наименьшим при минимальных температурах в регионе. Чем меньше влагонакопление в стене за время зимнего периода, тем легче и быстрее стена высохнет с наступлением летнего сезона. И конечно же, не стоит забывать о нормативном теплосопротивлении в регионе застройки.

Как выполняется расчет теплопотерь?

Расчет теплопотерь определяется на основании температуры внутреннего воздуха, температуры внутренней поверхности ограждающей конструкции и температуры уличного воздуха.

Температура внутри стен меняется линейно. Угол наклона графика зависит от значения термического сопротивления материала в разных его слоях.

Усредненное значение сопротивления теплопередачи внутри здания принимаем Ri = 0,13 м2 К / Вт. ГОСТ 8.524-85 и DIN 4108

Термическое сопротивление остальных слоев Re соответствует перепаду температур между внутренней поверхностью стены и уличным воздухом. (Т поверхности стены - T за пределами здания) dTe.

Затем по следующей формуле:

Ri / dTi = Re / dTe

находим Re:

Re = Ri * dTe / dTi

Общее тепловое сопротивление R = Re + Ri

R = Ri (1 + dTe / dTi)

И, наконец, значение теплопотерь

Пример

Температура в помещении: 20 ° C
на поверхность стены: 18 ° C
температура окружающей среды: -10 ° C

dТ = 2 ° C
DTE = 28 ° C
Ri = 0,13 м2 К / Вт

dТi = 2 ° C
dTe = 28 ° C
Ri = 0,13 м2 К / Вт
R = R (1 + dTe / dТi) = 1,95 м2 К / Вт

ТП = 0,5 Вт / м2 K

Кроме теплопотерь отображаются зоны возможной конденсации.
  • Черный график показывает падение/увеличение температуры внутри ограждающей конструкции в градусах.

  • Синий график - температура точки росы . Если этот график соприкасается с графиком температуры, то эти зоны называются зонами возможной конденсации (помечены голубым). Если во всех точках графика температура точки росы ниже температуры материала, то конденсата/росы не будет.
  • Загрузка...
    Top