Проверочные акустические расчеты воздушного шума. Расчет уровня шума Акустический расчёт, расчет уровня шума

Инженерно-строительный журнал, N 5, 2010 год
Рубрика: Технологии

Д.т.н., профессор И.И.Боголепов

ГОУ Санкт-Петербургский государственный политехнический университет
и ГОУ Санкт-Петербургский государственный морской технический университет;
магистр А.А.Гладких,
ГОУ Санкт-Петербургский государственный политехнический университет


Система вентиляции и кондиционирования воздуха (СВКВ) - важнейшая система для современных зданий и сооружений. Однако, кроме необходимого качественного воздуха, система транспортирует в помещения шум. Он идет от вентилятора и других источников, распространяется по воздуховоду и излучается в вентилируемое помещение. Шум несовместим с нормальным сном, учебным процессом, творческой работой, высокопроизводительным трудом, полноценным отдыхом, лечением, получением качественной информации . В строительных нормах и правилах России сложилась такая ситуация. Метод акустического расчета СВКВ зданий, использовавшийся в старом СНиПе II-12-77 "Защита от шума " , устарел и не вошел поэтому в новый СНиП 23-03-2003 "Защита от шума " . Итак, старый метод устарел, а нового общепризнанного пока нет . Ниже предлагается простой приближенный способ акустического расчета СВКВ в современных зданиях, разработанный с использованием лучшего производственного опыта, в частности, на морских судах .

Предлагаемый акустический расчет основан на теории длинных линий распространения звука в акустически узкой трубе и на теории звука помещений с практически диффузным звуковым полем . Он выполняется с целью оценки уровней звукового давления (далее - УЗД) и соответствия их значений действующим нормам допустимого шума . Он предусматривает определение УЗД от СВКВ вследствие работы вентилятора (далее - "машина") для следующих типовых групп помещений:

1) в помещении, где расположена машина;

2) в помещениях, через которые воздуховоды проходят транзитом;

3) в помещениях, обслуживаемых системой.

Исходные данные и требования

Расчет, проектирование и контроль защиты людей от шума предлагается выполнять для наиболее важных для человеческого восприятия октавных полос частот, а именно: 125 Гц, 500 Гц и 2000 Гц. Октавная полоса частот 500 Гц является среднегеометрической величиной в диапазоне нормируемых по шуму октавных полос частот 31,5 Гц - 8000 Гц . Для постоянного шума расчет предусматривает определение УЗД в октавных полосах частот по уровням звуковой мощности (УЗМ) в системе. Величины УЗД и УЗМ связаны общим соотношением = - 10, где - УЗД относительно порогового значения 2·10 Н/м; - УЗМ относительно порогового значения 10 Вт; - площадь распространения фронта звуковых волн, м.

УЗД должны определяться в расчетных точках нормируемых по шуму помещений по формуле = + , где - УЗМ источника шума. Величина , учитывающая влияние помещения на шум в нем, рассчитывается по формуле:

где - коэффициент, учитывающий влияние ближнего поля; - пространственный угол излучения источника шума, рад.; - коэффициент направленности излучения, принимается по экспериментальным данным (в первом приближении равен единице); - расстояние от центра излучателя шума до расчетной точки в м; = - акустическая постоянная помещения, м; - средний коэффициент звукопоглощения внутренних поверхностей помещения; - суммарная площадь этих поверхностей, м; - коэффициент, учитывающий нарушение диффузного звукового поля в помещении.

Указанные величины, расчетные точки и нормы допустимого шума регламентируются для помещений различных зданий СНиПом 23-03-2003 "Защита от шума " . Если расчетные значения УЗД превосходят норму допустимого шума хотя бы в одной из указанных трех полос частот, то необходимо спроектировать мероприятия и средства снижения шума.

Исходными данными для акустического расчета и проектирования СВКВ являются:

- компоновочные схемы, применяемые в конструкции сооружения; размеры машин, воздуховодов, регулирующей арматуры, колен, тройников и воздухораспределителей;

- скорости движения воздуха в магистралях и ответвлениях - по данным технического задания и аэродинамического расчета;

- чертежи общего расположения помещений, обслуживаемых СВКВ - по данным строительного проекта сооружения;

- шумовые характеристики машин, регулирующей арматуры и воздухораспределителей СВКВ - по данным технической документации на эти изделия.

Шумовыми характеристиками машины являются следующие уровни УЗМ воздушного шума в октавных полосах частот в дБ: - УЗМ шума, распространяющегося от машины в воздуховод всасывания; - УЗМ шума, распространяющегося от машины в воздуховод нагнетания; - УЗМ шума, излучаемого корпусом машины в окружающее пространство. Все шумовые характеристики машины определяются в настоящее время на основании акустических измерений по соответствующим национальным или международным стандартам и другим нормативным документам .

Шумовые характеристики глушителей, воздуховодов, регулируемой арматуры и воздухораспределителей представлены УЗМ воздушного шума в октавных полосах частот в дБ:

- УЗМ шума, генерируемого элементами системы при прохождении потока воздуха через них (генерация шума); - УЗМ шума, рассеиваемого или поглощаемого в элементах системы при прохождении через них потока звуковой энергии (снижение шума).

Эффективность генерации и снижения шума элементами СВКВ определяются на основании акустических измерений. Подчеркнем, что значения величин и должны быть указаны в соответствующей технической документации.

Должное внимание уделяется при этом точности и надежности акустического расчета, которые закладываются в погрешность результата величинами и .

Расчет для помещений, где установлена машина

Пусть в помещении 1, где установлена машина, имеется вентилятор, уровень звуковой мощности которого, излучаемый в трубопровод всасывания, нагнетания и через корпус машины, есть величины в дБ , и . Пусть у вентилятора на стороне трубопровода нагнетания установлен глушитель шума с эффективностью глушения в дБ (). Рабочее место находится на расстоянии от машины. Разделяющее помещение 1 и помещение 2 стена находится на расстоянии от машины. Постоянная звукопоглощения помещения 1: = .

Для помещения 1 расчет предусматривает решение трех задач.

1-я задача . Выполнение нормы допустимого шума .

Если всасывающий и нагнетательный патрубки выведены из помещения машины, то расчет УЗД в помещении, где она расположена, производится по следующим формулам.

Октавные УЗД в расчетной точке помещения определяются в дБ по формуле:

где - УЗМ шума, излучаемого корпусом машины с учетом точности и надежности с помощью . Величина , указанная выше, определяется по формуле:

Если в помещении размещены n источников шума, УЗД от каждого из которых в расчетной точке равны , то суммарный УЗД от всех их определяется по формуле:

В результате акустического расчета и проектирования СВКВ для помещения 1, где установлена машина, должно быть обеспечено выполнение в расчетных точках норм допустимого шума .

2-я задача. Расчет величины УЗМ в воздуховоде нагнетания из помещения 1 в помещение 2 (помещение, через который воздуховод проходит транзитом), а именно величины в дБ производится по формуле

3-я задача. Расчет величины УЗМ, излучаемой стенкой площадью со звукоизоляцией помещения 1 в помещение 2, а именно величины в дБ, выполняется по формуле

Таким образом, результатом расчета в помещении 1 является выполнение норм по шуму в этом помещении и получение исходных данных для расчета в помещении 2.

Расчет для помещений, через которые воздуховод проходит транзитом

Для помещения 2 (для помещений, через которые воздуховод проходит транзитом) расчет предусматривает решение следующих пяти задач.

1-я задача. Расчет звуковой мощности, излучаемой стенками воздуховода в помещение 2, а именно определение величины в дБ по формуле:

В этой формуле: - см. выше 2-ю задачу для помещения 1;

=1,12 - эквивалентный диаметр сечения воздуховода с площадью поперечного сечения ;

- длина помещения 2.

Звукоизоляция стенок цилиндрического воздуховода в дБ рассчитывается по формуле:

где - динамический модуль упругости материала стенки воздуховода, Н/м;

- внутренний диаметр воздуховода в м;

- толщина стенки воздуховода в м;


Звукоизоляция стенок воздуховодов прямоугольного сечения рассчитывается по следующей формуле в ДБ:

где = - масса единицы поверхности стенки воздуховода (произведение плотности материала в кг/м на толщину стенки в м);

- среднегеометрическая частота октавных полос в Гц.

2-я задача. Расчет УЗД в расчетной точке помещения 2, находящейся на расстоянии от первого источника шума (воздуховод) выполняется по формуле, дБ:

3-я задача. Расчет УЗД в расчетной точке помещения 2 от второго источника шума (УЗМ, излучаемой стеной помещения 1 в помещение 2, - величина в дБ) выполняется по формуле, дБ:

4-я задача. Выполнение нормы допустимого шума .

Расчет ведется по формуле в дБ:

В результате акустического расчета и проектирования СВКВ для помещения 2, через которое воздуховод проходит транзитом, должно быть обеспечено выполнение в расчетных точках норм допустимого шума . Это первый результат.

5-я задача. Расчет величины УЗМ в воздуховоде нагнетания из помещения 2 в помещение 3 (помещение, обслуживаемое системой), а именно величины в дБ по формуле:

Величина потерь на излучение звуковой мощности шума стенками воздуховодов на прямолинейных участках воздуховодов единичной длины в дБ/м представлена в таблице 2. Вторым результатом расчета в помещении 2 является получение исходных данных для акустического расчета системы вентиляции в помещении 3.

Расчет для помещений, обслуживаемых системой

В помещениях 3, обслуживаемых СВКВ (для которых система в конечном счете и предназначена), расчетные точки и нормы допустимого шума принимаются в соответствии со СНиП 23-03-2003 "Защита от шума " и техническим заданием.

Для помещения 3 расчет предусматривает решение двух задач.

1-я задача. Расчет звуковой мощности, излучаемой воздуховодом через выпускное воздухораспределительное отверстие в помещение 3, а именно определение величины в дБ, предлагается выполнять следующим образом.

Частная задача 1 для низкоскоростной системы со скоростью воздуха v << 10 м/с и = 0 и трех типовых помещений (см. ниже пример акустического расчета) решается с помощью формулы в дБ:

Здесь



() - потери в глушителе шума в помещении 3;

() - потери в тройнике в помещении 3 (см. ниже формулу);

- потери в результате отражения от конца воздуховода (см. таблицу 1 ).

Общая задача 1 состоит в решении для многих из трех типовых помещений с помощью следующей формулы в дБ:



Здесь - УЗМ шума, распространяющегося от машины в воздуховод нагнетания в дБ с учетом точности и надежности величиной (принимается по данным технической документации на машины);

- УЗМ шума, генерируемого воздушным потоком во всех элементах системы в дБ (принимается по данным технической документации на эти элементы);

- УЗМ шума, поглощающегося и рассеивающегося при прохождении потока звуковой энергии через все элементы системы в дБ (принимается по данным технической документации на эти элементы);

- величина, учитывающая отражение звуковой энергии от концевого выходного отверстия воздуховода в дБ, принимается по таблице 1 (эта величина равна нулю, если уже включает в себя );

- величина, равная 5 дБ для низкоскоростной СВКВ (скорость воздуха в магистралях меньше 15 м/с), равная 10 дБ для среднескоростной СВКВ (скорость воздуха в магистралях меньше 20 м/с) и равная 15 дБ для высокоскоростной СВКВ (скорость в магистралях меньше 25 м/с).

Таблица 1. Величина в дБ. Октавные полосы

Акустичекие расчеты

Среди проблем оздоровления окружающей среды борьба с шумами является одной из актуальнейших. В крупных городах шум является одним из основных физических факторов, формирующих условия среды обитания.

Рост промышленного и жилищного строительства, бурное развитие различных видов транспорта, все большее применение в жилых и общественных зданиях сантехнического и инженерного оборудования, бытовой техники привели к тому, что уровни шума в селитебных зонах города стали сравнимы с уровнями шумов на производстве.

Шумовой режим крупных городов формируется главным образом автомобильным и рельсовым транспортом, составляющим 60-70% всех шумов.

Заметное влияние на уровень шума оказывает увеличение интенсивности воздушных перевозок, появление новых мощных самолетов и вертолетов, а также железнодорожный транспорт, открытые линии метро и метро мелкого заложения.

Вместе с тем, в некоторых крупных городах, где предпринимаются меры по улучшению шумовой обстановки наблюдается снижение уровней шума.

Шумы бывают акустические и неакустичекие, какова их разница?

Акустический шум определяется как совокупность различных по силе и частоте звуков, возникающих в результате колебательного движения частиц в упругих средах (твердых, жидких, газообразных).

Неакустические шумы - Радиоэлектронные шумы - случайные колебания токов и напряжений в радиоэлектронных устройствах, возникают в результате неравномерной эмиссии электронов в электровакуумных приборах (дробовой шум, фликкер-шум), неравномерности процессов генерации и рекомбинации носителей заряда (электронов проводимости и дырок) в полупроводниковых приборах, теплового движения носителей тока в проводниках (тепловой шум), теплового излучения Земли и земной атмосферы, а также планет, Солнца, звёзд, межзвёздной среды и т. д. (шумы космоса).

Акустический расчёт, расчет уровня шума.

В процессе строительства и эксплуатации различных объектов проблемы борьбы с шумом являются неотъемлемой частью охраны труда и защиты здоровья населения. Выступать источниками могут машины, транспортные средства, механизмы и другое оборудование. Шум, его величина воздействия и вибраций на человека зависит от уровня звукового давления, частотных характеристик.

Под нормированием шумовых характеристик понимают установление ограничений на значения этих характеристик, при которых шум, воздействующий на людей, не должен превышать допустимых уровней, регламентированных действующими санитарными нормами и правилами.

Целями акустического расчета являются:

Выявление источников шума;

Определение их шумовых характеристик;

Определение степени влияния источников шума на нормируемые объекты;

Расчет и построение индивидуальных зон акустического дискомфорта источников шума;

Разработка специальных шумозащитных мероприятий, обеспечивающих требуемый акустический комфорт.

Установка систем вентиляции и кондиционирования уже считается естественной потребностью в любом здании (будь оно жилое или административное), акустический расчет должен выполняться и для помещений подобного типа. Так, в случае не проведения расчета уровня шума, может оказаться, что в помещении очень низкий уровень звукопоглощения, а это очень усложняет процесс общения людей в нем.

Поэтому прежде чем устанавливать в помещении системы вентиляции, провести акустический расчет нужно обязательно. Если окажется, что для помещения характерны плохие акустические свойства, необходимо предложить провести ряд мероприятий, по улучшению акустической обстановки в помещении. Поэтому акустические расчеты выполняются и на установку бытовых кондиционеров.

Акустический расчет чаще всего проводится для объектов, которые имеют сложную акустику или отличаются повышенным требованиям к качеству звука.

Звуковые ощущения возникают в органах слуха при воздействии на них звуковых волн в диапазоне от 16 Гц до 22 тыс. Гц. Звук распространяется в воздухе со скоростью 344 м/с, за 3 сек. 1 км.

Величина порога слышимости зависит от частоты ощущаемых звуков и равна 10-12 Вт/м 2 на частотах близких 1000 Гц. Верхней границей является порог болевого ощущения, который в меньшей степени зависит от частоты и лежит в пределах 130 - 140 дБ (на частоте 1000 Гц по интенсивности 10 Вт/м 2, по звуковому давления).

Соотношение уровня интенсивности и частоты определяет ощущение громкости звука, т.е. звуки, имеющие различную частоту и интенсивность, могут оцениваться человеком как равногромкие.

При восприятии звуковых сигналов на определенном акустическом фоне может наблюдаться эффект маскировки сигнала.

Эффект маскировки может отрицательно сказываться в акустических индикаторах и может быть использован для улучшения акустической обстановки, т.е. в случае маскировки высокочастотного тона низкочастотным, который менее вреден для человека.

Порядок выполнения акустического расчета.

Для выполнения акустического расчета потребуются следующие данные:

Размеры помещения, для которого будет проводиться расчет уровня шума;

Основные характеристики помещения и его свойства;

Спектр шума от источника;

Характеристика преграды;

Данные о расстоянии от центра источника шума до точки акустического расчета.

При расчете, для начала определяются источники шума и их характерные свойства. Далее на исследуемом объекте выбираются точки, в которых будут проводиться расчеты. В выбранных точках объекта проводится расчет предварительного уровня звукового давления. Основываясь на полученных результатах, выполняется расчет по снижению шума до требуемых норм. Получив все необходимые данные, выполняется проект по разработке мероприятий, благодаря которым будет снижен уровень шума.

Правильно выполненный акустический расчет является залогом отличной акустики и комфорта в помещении любого размера и конструкции.

На основе выполненного акустического расчета можно предлагать следующие мероприятия для снижения уровня шума:

* установка звукоизолирующих конструкций;

* использование уплотнений в окнах, дверях, воротах;

* использование конструкций и экранов, которые поглощают звук;

*осуществление планировки и застройки селитебной территории в соответствии со СНиП;

* применение глушителей шума в вентиляционных системах и системах кондиционирования.

Проведение акустического расчета.

Работы по расчету уровней шума, оценки акустического (шумового) воздействия, а также проектирование специализированных шумозащитных мероприятий, должны осуществляться специализированной организацией, имеющей соответствующую область.

шум акустический расчет измерение

В самом простом определении основная задача акустического расчета - это оценка уровня шума, создаваемого источником шума в заданной расчетной точке с установленным качеством акустического воздействия.

Процесс проведения акустического расчета состоит из следующих основных этапов:

1. Сбор необходимых исходных данных:

Характер источников шума, режим их работы;

Акустические характеристики источников шума (в диапазоне среднегеометрических частот 63-8000 Гц);

Геометрические параметры помещения, в котором расположены источники шума;

Анализ ослабленных элементов огорождающих конструкции, через которые шум будет проникать в окружающую среду;

Геометрические и звукоизоляционные параметры ослабленных элементов огорождающих конструкций;

Анализ близлежащих объектов с установленным качеством акустического воздействия, определений допустимых уровней звука для каждого объекта;

Анализ расстояний от внешних источников шума до нормируемых объектов;

Анализ возможных экранирующих элементов на пути распространения звуковой волны (застройка, зеленые насаждения и т.д.);

Анализ ослабленных элементов огорождающих конструкций (оконные проемы, двери и т.д.), через которые шум будет проникать в нормируемые помещения, выявление их звукоизоляционной способности.

2. Акустический расчет производится на основании действующих методических указаний и рекомендаций. В основном это «Методики расчета, нормативы».

В каждой расчетной точке необходимо производить суммирование всех имеющихся источников шума.

Результатом акустического расчета являются некие значения (дБ) в октавных полосах со среднегеометрическими частотами 63-8000 Гц и эквивалентное значение уровня звука (дБА) в расчетной точке.

3. Анализ результатов расчета.

Анализ полученных результатов осуществляется сравнением значений, полученных в расчетной точке с установленными Санитарными нормами.

При необходимости, следующим этапом проведения акустического расчета может быть проектирование необходимых шумозащитных мероприятий, которые позволят снизить акустическое воздействие в расчетных точках до допустимого уровня.

Проведение инструментальных измерений.

Помимо акустических расчетов, можно провести расчет инструментальных измерений уровней шума любой сложности, в том числе:

Измерение шумового воздействия существующих систем вентиляции и кондиционирования для офисных зданий, частных квартир и т.д.;

Осуществление измерений уровней шума для аттестации рабочих мест;

Проведение работ по инструментальному измерению уровней шума в рамках проекта;

Проведение работ по инструментальному измерению уровней шума в рамках технических отчетов при утверждении границ СЗЗ;

Осуществление любых инструментальных измерений шумового воздействия.

Проведение инструментальных замеров уровней шума производится специализированной мобильной лабораторией с применением современного оборудования.

Сроки выполнения акустического расчета. Сроки выполнения работы зависят от объема расчетов и измерений. Если необходимо произвести акустический расчет для проектов жилых застроек или административных объектов, то они выполняются в среднем 1 - 3 недели. Акустический расчет для крупных или уникальных объектов (театры, органные залы) занимает больше времени, основываясь на предоставленных исходных материалах. Кроме того, на срок работы во многом влияют количество исследуемых источников шума, а также внешние факторы.


стр. 1



стр. 2



стр. 3



стр. 4



стр. 5



стр. 6



стр. 7



стр. 8



стр. 9



стр. 10



стр. 11



стр. 12



стр. 13



стр. 14



стр. 15



стр. 16



стр. 17



стр. 18



стр. 19



стр. 20



стр. 21



стр. 22



стр. 23



стр. 24



стр. 25



стр. 26



стр. 27



стр. 28



стр. 29



стр. 30

(ГОССТРОЙ СССР)

указания

СН 399-69

МОСКВА - 1970

Издание официальное

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СОВЕТА МИНИСТРОВ СССР ПО ДЕЛАМ СТРОИТЕЛЬСТВА

(ГОССТРОЙ СССР)

УКАЗАНИЯ

ПО АКУСТИЧЕСКОМУ РАСЧЕТУ ВЕНТИЛЯЦИОННЫХ УСТАНОВОК

Утверждены Государственным комитетом Совета Министров СССР по делам строительства

ИЗДАТЕЛЬСТВО ЛИТЕРАТУРЫ ПО СТРОИТЕЛЬСТВУ Москва - 1970

шиберы, решетки, плафоны и т. п.), следует определять по формуле

L p = 601go + 301gC+101g/? + fi, (5)

где v - средняя скорость воздуха на входе в рассматриваемое устройство (элемент установки), подсчитанная по площади подводящего воздуховода (патрубка) для дросселирующих устройств и плафонов и по габаритным размерам для решеток в м/сек;

£ - коэффициент аэродинамического сопротивления элемента вентиляционной сети, отнесенный к скорости воздуха на входе в него; для дисковых плафонов ВНИИГС (отрывная струя) £ = 4; для анемостатов и плафонов ВНИИГС (настильная струя) £ = 2; для приточных и вытяжных решеток коэффициенты сопротивления принимаются по графику на рис. 2;

Приточная решетка

Вытяжная решетка

Рис. 2. Зависимость коэффициента сопротивления решетки от ее живого сечения

F - площадь поперечного сечения подводящего воздуховода в м 2 ;

Б - поправка, зависящая от типа элемента, в дб; для дросселирующих устройств, анемостатов и дисковых плафонов Б = 6 дб; для плафонов конструкции ВНИИГС Б =13 дб; для решеток Б=0.

2.10. Октавные уровни звуковой мощности шума, излучаемого в воздуховод дросселирующими устройствами, следует определять по формуле (3).

При этом подсчитывается по формуле (5), поправка AL 2 определяется по табл. 3 (в расчет следует принимать площадь поперечного сечения воздуховода, в котором установлен рассматриваемый элемент или устройство), а поправки AL\ - по данным табл._5 в зависимости от величины частотного параметра f, который определяется уравнением

! = < 6 >

где f - частота в гц;

D - средний поперечный размер воздуховода (эквивалентный диаметр) в м; v - средняя скорость на входе в рассматриваемый элемент в м/сек.

Таблица 5

Поправки AL) для определения октавных уровней звуковой мощности шума дросселирующих устройств в дб

Частотный параметр f

Примечание Промежуточные значения в табл 5 следует принимать по интерполяции

2.11. Октавные уровни звуковой мощности шума, создаваемого в плафонах и решетках, следует рассчитывать по формуле (2), принимая поправки ALi по данным табл. 6.

2.12. Если скорость движения воздуха перед воздухо-распределительным или воздухозаборным устройством (плафон, решетка и т. п.) не превышает допускаемой величины о доп, то создаваемый в них шум прн расчете

Таблица 6

Поправки ALi, учитывающие распределение звуковой мощности шума плафонов н решеток по октавным полосам, в дб

Тип устройства

Анемостат..........

Плафон ВНИИГС (отрывная

струя)...........

Плафон ВНИИГС (настильная

струя)...........

Дисковый плафон......

решетка...........

необходимого снижения уровней звукового давления (см. раздел 5) можно не учитывать

2.13. Допускаемую скорость движения воздуха перед воздухораспределительным или воздухозаборным устройством установок следует определять по формуле

у Д оп = 0,7 10* м/сек;

^доп + 101е ~ -301ge-MIi-

где Ь доп - допустимый по нормам октавный уровень звукового давления в дб; п - число плафонов или решеток в рассматриваемом помещении;

В - постоянная помещения в рассматриваемой октавной полосе в м 2 , принимаемая в соответствии с пп. 3.4 или 3.5;

AZ-i - поправка, учитывающая распределение уровней звуковой мощности плафонов и решеток по октавным полосам, принимаемая по табл. 6, в дб;

Д - поправка на расположение источника шума; при расположении источника в рабочей зоне (не выше 2 м от пола), А = 3 дб; если источник выше этой зоны, А *■ 0;

0,7 - коэффициент запаса;

F, Б - обозначения те же, что и в п. 2.9, формула (5).

Примечание. Определение допускаемой скорости движения воздуха производится только для одной частоты, которая равна для плафонов ВНИИГС 250 Щ, для дисковых плафонов 500 гц, для анемостатов и решеток 2000 гц.

2.14. В целях снижения уровня звуковой мощности шума, генерируемого поворотами и тройниками воздуховодов, участков резкого изменения площади поперечного сечения и т. п., следует ограничивать скорости движения воздуха в магистральных воздуховодах общественных зданий и вспомогательных зданий промышленных предприятий до 5-6 м/сек, а на ответвлениях до 2-4 м/сек. Для производственных здании эти скорости можно соответственно увеличивать в два раза, если по технологическим и другим требованиям это допустимо.

3. РАСЧЕТ ОКТАВНЫХ УРОВНЕЙ ЗВУКОВОГО ДАВЛЕНИЯ В РАСЧЕТНЫХ ТОЧКАХ

3.1. Октавные уровни звукового давления на постоянных рабочих местах или в помещениях (в расчетных точках) не должны превышать установленных нормами.

(П р им е ч а ни я: 1. Если нормативные требования к уровням звукового давления различны в течение суток, то акустический расчет установок следует производить на наиболее низкие допустимые уровни звукового давления.

2. Уровни звукового давления на постоянных рабочих местах или в помещениях (в расчетных точках) зависят от звуковой мощности и расположения источников шума и звукопоглощающих качеств рассматриваемого помещения.

3.2. При определении октавных уровней звукового давления расчет следует производить для постоянных рабочих мест или расчетных точек в помещениях, наиболее близко расположенных к источникам шума (отопительно-вентиляционным агрегатам, воздухораспределительным или воздухозаборным устройствам, воздушным или воздушно-тепловым завесам и т. п.). На прилегающей территории за расчетные точки следует принимать точки, ближайшие к источникам шума (вентиляторы, открыто расположенные на территории, вытяжные или воздухозаборные шахты, выбросные устройства вентиляционных установок и т. п.), для которых нормируются уровни звукового давления.

а - источники шума (автономный кондиционер и плафон) и расчетная точка находятся в одном помещении; б - источники шума (вентилятор и элементы установки) и расчетная точка находятся в различных помещениях; в - источник шума - вентилятор находится в помещении, расчетная точка - на прилета ницей территории; 1 - автономный кондиционер; 2 - расчетная точка; 3 - генерирующий шум плафон; 4 - виброизолиро-ванный вентилятор; 5 - гибкая вставка; в -- центральный глушитель; 7 - внезапное сужение сечения воздуховода; 8 - разветвление воздуховода; 9 - прямоугольный поворот с направляющими лопатками; 10 - плавный поворот воздуховода; 11 - прямоугольный поворот воздуховода; 12 - решетка; /

3.3. Октавные/Уровни звукового давления в расчетных точках надлежит определять следующим образом.

Случай 1. Источник шума (генерирующая шум решетка, плафон, автономный кондиционер и т. п.) находится в рассматриваемом помещении (рис. 3). Октавные уровни звукового давления, создаваемые в расчетной точке одним источником шума, следует определять по формуле

L-L, + I0! g (-£-+--i-l (8)

окт \ 4 Я г г В т }

Пр и м е ч а н и е. Для обычных помещений, к которым не предъявляются специальные требования по акустике, - по формуле

L = Lp - 10 lg В ш -4- Д -{- 6, (9)

где Lp okt - октавный уровень звуковой мощности источника шума (определяется по данным раздела 2) в дб\

В ш - постоянная помещения с источником шума в рассматриваемой октавной полосе (определяется по пп. 3.4 или 3.5) в ж 2 ;

Д - поправка на расположение источника шума Если источник шума расположен в рабочей зоне, то для всех частот Д =3 дб; если выше рабочей зоны, - Д=0;

Ф - фактор направленности излучения источника шума (определяется по кривым на рис 4), безразмерный; г - расстояние от геометрического центра источника шума до расчетной точки в ж.

Графическое решение уравнения (8) приводится на рис. 5.

Случай 2. Расчетные точки находятся в помещении, изолируемом от шума. Шум от вентилятора или элемента установки распространяется по воздуховодам и излучается в помещение через воздухораспределительное или воздухоприемное устройство (решетку). Октавные уровни звукового давления, создаваемые в расчетных точках, следует определять по формуле

L = L P -ДL p + 101g(-%+-V (10)

Пр имечание. Для обычных помещений, к которым не предъ являются специальные требования по акустике, - по формуле

L - L p -A Lp -10 lgiJ H ~Ь A -f- 6, (11)

где L р в - октавный уровень излучаемой в воздуховод звуковой мощности шума вентилятора или элемента установки в рассматриваемой октавной полосе в дб (определяется в соответствии с пп. 2.5 или 2.10);

AL р в - суммарное снижение уровня (потери) звуковой мощности шума вентилятора или эле-

мента установки в рассматриваемой октавной полосе по пути распространения звука в дб (определяется в соответствии с п. 4.1); Д - поправка на расположение источника шума; если воздухораспределительное или воздухоприемное устройство расположено в рабочей зоне, А = 3 дб, если выше ее, - Д = 0; Ф и - фактор направленности элемента установки (отверстие, решетка и т. п.), излучающего шум в изолируемое помещение, безразмерный (определяется по графикам на рис. 4); г„-расстояние от элемента установки, излучающего шум в изолируемое помещение, до расчетной точки в м\

В и - постоянная изолируемого от шума помещения в рассматриваемой октавной полосе в м 2 (определяется по пп. 3.4 или 3.5).

Случай 3. Расчетные точки находятся на прилегающей к зданию территории. Шум вентилятора распространяется по воздуховоду и излучается в атмосферу через решетку или шахту (рис. 6). Октавные уровни звукового давления, создаваемого в расчетных точках, следует определять по формуле

I = L p -AL p -201gr a -i^- + A-8, (12)

где г а -расстояние от элемента установки (решетка, отверстие), излучающего шум в атмосферу, до расчетной точки в м\ р а -затухание звука в атмосфере, принимаемое по табл. 7 в дб/км\

А - поправка в дб, учитывающая расположение расчетной точки относительно оси излучающего шум элемента установки (для всех частот принимается по рис. 6).

1 - вентиляционная шахта; 2 - жалюзийная решетка

Остальные величины те же, что в формулах (10)

Таблица 7

Затухание звука в атмосфере в дб/км

Среднегеометрические частоты октавных полос в гц

3.4. Постоянную помещения В следует определять по графикам на рис. 7 или по табл. 9, пользуясь табл. 8 для определения характеристики помещения.

3.5. Для помещений, к которым предъявляются специальные требования по акустике (уникальные зритель-

ные залы и т. п.), постоянную помещения следует определять в соответствии с указаниями по акустическому расчету для этих помещений.

Объем помещения в м я

Среднегеометрическая частота в г]ц

Частотный множитель (*.

200 < У <500

Постоянная помещения на расчетной частоте равна постоянной помещения на частоте 1000 гц умноженной на частотный множитель ^£=£1000

3.6. Если в расчетную точку поступает шум от нескольких источников шума (например, приточных и рециркуляционных решеток, автономного кондиционера и др.), то для рассматриваемой расчетной точки по соответствующим формулам п. 3.2 следует определять октавные уровни звукового давления, создаваемые каждым из источников шума в отдельности, и суммарный уровень в

Настоящие «Указания по акустическому расчету вентиляционных установок» разработаны НИИ-строительной физики Госстроя СССР совместно с институтами Сантехпроект Госстроя СССР и Гипронииавиапром Минавиапрома.

Указания разработаны в развитие требований главы СНиП И-Г.7-62 «Отопление, вентиляция и кондиционирование воздуха. Нормы проектирования» и «Санитарных норм проектирования промышленных предприятий» (СН 245-63), в которых установлена необходимость снижения шума установок вентиляции, кондиционирования воздуха и воздушного отопления зданий и сооружений различного назначения, когда он превышает допустимые по нормам уровни звукового давления.

Редакторы: А. №1. Кошкин (Госстрой СССР), д-р техн. наук, проф. Е. Я. Юдин и кандидаты техн. наук Э. А. Лесков и Г. Л. Осипов (НИИ строительной физики), канд. техн. наук И. Д. Рассади

В Указаниях изложены общие принципы акустических расчетов установок вентиляции, кондиционирования воздуха и воздушного отопления с механическим побуждением. Рассмотрены способы снижения уровней звукового давления на постоянных рабочих местах и в помещениях (в расчетных точках) до величин, установленных нормами.

на (Гипронииавиапром) и инж. |г. А. Кацнельсон/ (ГПИ Сантехпроект)

1. Общие положения............ - . . , 3

2. Источники шума установок и их шумовые характеристики 5

3. Расчет октавных уровней звукового давления в расчетных

точках.................... 13

4. Снижение уровней (потери) звуковой мощности шума в

различных элементах воздуховодов........ 23

5. Определение требуемого снижения уровней звукового давления. . . * . ............... 28

6. Мероприятия по снижению уровней звукового давления. 31

Приложение. Примеры акустического расчета установок вентиляции, кондиционирования воздуха и воздушного отопления с механическим побуждением...... 39

План I кв. 1970 г., № 3

Характеристики помещений

Таблица 8

Описание и назначение помещения

Характеристика для пользования графиками на рис. 7

Помещения без мебели, с небольшим количеством людей (например, металлообрабатывающие цехи, вентиляционные камеры, испытательные стенды и т. п.)...............

Помещения с жесткой мебелью и небольшим количеством людей (например, кабинеты, лаборатории, ткацкие и деревообрабатывающие цехи и т. п.)

Помещения с большим количеством людей и мягкой мебелью или с облицованным потолком (например, рабочие помещения административных зданий, залы заседаний, аудитории, рестораны, универмаги, конструкторские бюро, залы ожидания аэропортов и т. п.)............

Помещения со звукопоглощающей облицовкой потолка и стен (например, радио и телестудии, вычислительные центры и т. л.)........

каждой октавной полосе. Суммарный уровень звукового давления следует определять в соответствии с п. 2.7.

Примечание. Если шум вентилятора (или дросселя) от одной системы (приточной или вытяжной) проникает в помещение через несколько решеток, то распределение звуковой мощности между ними следует считать равномерным.

3.7. Если расчетные точки находятся в помещении, по которому проходит «шумный» воздуховод, а шум в помещение проникает через стенки воздуховода, то октавные уровни звукового давления следует определять по формуле

L - L p -AL p + 101g --R B - 101gB„-J-3, (13)

где Lp 9 - октавный уровень звуковой мощности источника шума, излучаемой в воздуховод, в дб (определяется в соответствии с пп 2 5 и 2.10);

ALp b - суммарное снижение уровней (потери) звуковой мощности по пути распространения звука от источника шума (вентилятора, дросселя и т. п.) до начала рассматриваемого участка воздуховода, излучающего шум в помещение, в дб (определяется в соответствии с разделом 4);


Государственный комитет Совета Министров СССР по делам строительства (Госстрой СССР)


1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Настоящие Указания разработаны в развитие требований главы СНиП И-Г.7-62 «Отопление, вентиляция и кондиционирование воздуха. Нормы проектирования» и «Санитарных норм проектирования промышленных предприятий» (СН 245-63), в которых установлена необходимость снижения шума установок вентиляции, кондиционирования воздуха и воздушного отопления с механическим побуждением до уровней звукового давления допустимых по нормам.

1.2. Требования настоящих Указаний распространяются на акустические расчеты воздушного (аэродинамического) шума, образующегося при работе установок, перечисленных в п. 1.1.

Примечание. В настоящих Указаниях не рассматриваются расчеты виброизоляции вентиляторов и электродвигателей (изоляции сотрясений и звуковых колебаний, передающихся строительным конструкциям), а также расчеты звукоизоляции ограждающих конструкций вентиляционных камер.

1.3. Методика расчетов воздушного (аэродинамического) шума основана на определении уровней звукового давления шума, образующегося при работе указанных в п. 1.1 установок, на постоянных рабочих местах или в помещениях (в расчетных точках), определении необходимости снижения этих уровней шума и мероприятий по уменьшению уровней звукового давления до величин, допускаемых нормами.

Примечания: 1. Акустический расчет должен входить в состав проектов установок вентиляции, кондиционирования воздуха и воздушного отопления с механическим побуждением для зданий и сооружений различного назначения.

Акустический расчет следует делать только для помещений о нормируемыми уровнями шума.

2. Воздушный (аэродинамический) шум вентилятора и шум, создаваемый потоком воздуха в воздуховодах, имеют широкополосные спектры.

3. В настоящих Указаниях под шумом следует йонимать всякого рода звуки, мешающие восприятию полезных звуков или нарушающие тишину, а также звуки, оказывающие вредное или раздражающее действие на организм человека.

1.4. При акустическом расчете центральной установки вентиляции, кондиционирования воздуха и воздушного отопления следует рассматривать наиболее короткую ветвь воздуховодов. Если центральная установка обслуживает несколько помещений, для которых нормативные требования по шуму различны, то дополнительно следует производить расчет для ветви воздуховодов, обслуживающей помещение с наименьшим уровнем шума.

Отдельно следует производить расчет для автономных отопительно-вентиляционных агрегатов, автономных кондиционеров, агрегатов воздушных или воздушнотепловых завес, местных отсосов, агрегатов установок воздушного душирования, которые ближе всего расположены к расчетным точкам или имеют наибольшие производительность и звуковую мощность.

Отдельно следует производить акустический расчет ветвей воздуховодов, выходящих в атмосферу (всасывание и выброс воздуха установками).

При наличии между вентилятором и обслуживаемым помещением устройств дросселирующих (диафрагм, дроссель-клапанов, шиберов), воздухораспределительных и воздухоприемных (решетки, плафоны, анемостаты и т. п.), резких изменений поперечного сечения воздуховодов, поворотов и тройников следует производить акустический расчет этих устройств и элементов установок.

1.5. Акустический расчет следует производить для каждой из восьми октавных полос слухового диапазона (для которых нормируются уровни шума) со среднегеометрическими частотами октавных полос 63, 125, 250, 500, 1000, 2000, 4000 и 8000 гц.

Пр имечания: 1. Для центральных систем воздушного отопления, вентиляции и кондиционирования воздуха при наличии разветвленной сети воздуховодов допускается производить расчет только для частот 125 и 250 гц.

2. Все промежуточные акустические расчеты выполняются с точностью до 0,5 дб. Конечный результат округляется до целого числа децибел.

1.6. Требуемые мероприятия по снижению шума, создаваемого установками вентиляции, кондиционирования воздуха и воздушного отопления, в случае необходимости следует определять для каждого источника в отдельности.

2. ИСТОЧНИКИ ШУМА УСТАНОВОК И ИХ ШУМОВЫЕ ХАРАКТЕРИСТИКИ

2.1. Акустические расчеты по определению уровня звукового давления воздушного (аэродинамического) шума следует производить с учетом шума, создаваемого:

а) вентилятором;

б) при движении воздушного потока в элементах установок (диафрагмах, дросселях, шиберах, поворотах воздуховодов, тройниках, решетках, плафонах и т. п.).

Кроме того, следует учитывать шум, передаваемый по вентиляционным воздуховодам из одного помещения в другое.

2.2. Шумовые характеристики (октавные уровни звуковой мощности) источников шума (вентиляторов, отопительных агрегатов, комнатных кондиционеров, дросселирующих, воздухораспределительных и воздухоприемных устройств и т. п.) следует принимать по паспортам на это оборудование или по каталожным данным

При отсутствии шумовых характеристик их следует определять экспериментально по заданию заказчика или расчетом, руководствуясь данными, приведенными в настоящих Указаниях.

2.3. Общий уровень звуковой мощности шума вентилятора следует определять по формуле

L p =Z+251g#+l01gQ-K (1)

где 1^Р - общий уровень звуковой мощности шума вен

тилятора в дб относительно 10“ 12 вт;

L-критерий шумности, зависящий от типа и конструкции вентилятора, в дб; следует принимать по табл. 1;

Я- полное давление, создаваемое вентилятором, в кГ/м 2 ;

Q - производительность вентилятора в м^/сек;

5 - поправка на режим работы вентилятора в дб.

Таблица 1

Значения критерия шумности L для вентиляторов в дб

Тип и серия вентилятора

Нагнетания. . .

Всасывания. . .

Примечания: 1. Значение 6 при отклонении режима работы вентилятора не более чем «а 20% от режима максимума к. п. д. следует принимать равным 2 дб. На режиме работы вентилятора с максимумом к. п. д. 6=0.

2. Для облегчения расчетов на рис. 1 приведен график для определения величины 251gtf+101gQ.

3, Полученная по формуле (1) величина характеризует звуковую мощность, излучаемую открытым входным либо выходным патруб-ком вентилятора в одну сторону в свободную атмосферу или в помещение при наличии плавного подвода воздуха к входному патрубку.

4. При неплавном подводе воздуха к входному патрубку или установке дросселя во входом патрубке к величинам, указанным в

табл. 1, следует добавлять для осевых вевтиляторов 8 дб, для центробежных вентиляторов 4 дб

2.4. Октавные уровни звуковой мощности шума вентилятора, излучаемого открытым входным либо выходным патрубком вентилятора L р а, в свободную атмосферу или в помещение, следует определять по формуле

(2)

где - общий уровень звуковой мощности вентилятора в дб;

ALi - поправка, учитывающая распределение звуковой мощности вентилятора по октавным полосам в дб, принимаемая в зависимости от типа вентилятора и числа оборотов по табл. 2.

Таблица 2

Поправки ALu учитывающие распределение звуковой мощности вентилятора по октавным полосам, в дб

Центробежные вентиляторы

Среднегеометрические час

Осевые вен

тоты октавных полос в гц

с лопатками, за

с лопатками, заг

тиляторы

гнутыми вперед

нутыми назад

(16 000) (3 2 000)

Примечания: 1. Приведенные в табл. 2 данные без скобок справедливы, когда число оборотов вентилятора находится в пределах 700-1400 об}мин.

2. При числе оборотов вентилятора 1410-2800 обIмин весь спектр следует сдвинуть на октаву вниз, а при числе оборотов 350- 690 об/мин на октаву вверх, принимая для крайних октав значения, указанные в скобках для частот 32 и 16000 гц.

3. При числе оборотов вентилятора более 2800 об/мин весь спектр следует сдвинуть на две октавы вниз.

2.5. Октавные уровни звуковой мощности шума вентилятора, излучаемого в вентиляционную сеть, следует определять по формуле

Lp - L p ■- A L-± -|~ Л i-2,

где AL 2 - поправка, учитывающая влияние присоединения вентилятора к сети воздуховодов в дб, определяемая по табл. 3.

Таблица 3

Поправка Д£ 2 > учитывающая влияние присоединения вентилятора или дросселирующего устройства к сети воздуховодов в дб

Корень квадратный нз площади поперечного сечения патрубка вентилятора или воздуховода в мм

Среднегеометрические частоты октавных полос в гц

2.6. Общий уровень звуковой мощности шума, излучаемого вентилятором через стенки кожуха (корпуса) в помещение вентиляционной камеры, следует определять по формуле (1) при условии, что величина критерия шум-ности L принимается по табл. 1, как его среднее значение для стороны всасывания и нагнетания.

Октавные уровни звуковой мощности шума, излучаемого вентилятором в помещение вентиляционной камеры, следует определять по формуле (2) и табл. 2.

2.7. Если в вентиляционной камере одновременно работает несколько вентиляторов, то для каждой октавной полосы необходимо определять суммарный уровень

звуковой мощности шума, излучаемого всеми вентиляторами.

Суммарный уровень звуковой мощности шума L cyu при работе п одинаковых вентиляторов следует определять по формуле

£сум = Z.J + 10 Ign, (4)

где Li - уровень звуковой мощности шума одного вентилятора в дб-, п - число одинаковых вентиляторов.

Для суммирования уровней звуковой мощности шума или звукового давления, создаваемых двумя источниками шума разных уровней, следует пользоваться табл. 4.

Таблица 4

Сложение уровней звуковой мощности или звукового давления

Разность двух

складываемых уровней в дб

Добавка к более высокому уровню для определения Суммарного уровня в дб

Примечание. При числе разных уровней шума более двух сложение производится последовательно, начиная с двух больших уровней.

2.8. Октавные уровни звуковой мощности шума, излучаемого в помещение автономными кондиционерами, отопительно-вентиляционными агрегатами, агрегатами воздушного душировання (без сетей воздуховодов) с осевыми вентиляторами, следует определять по формуле (2) и табл. 2 с повышающей поправкой 3 дб.

Для автономных агрегатов с центробежными вентиляторами октавные уровни звуковой мощности шума, излучаемого всасывающим и нагнетающим патрубками вентилятора, следует определять по формуле (2) и табл. 2, а суммарный уровень шума - по табл. 4.

Примечание. При заборе воздуха установками снаружи по вышающую поправку принимать не требуется.

2.9. Общий уровень звуковой мощности шума, создаваемого дросселирующими, воздухораспределительными и воздухоприемными устройствами (дроссель-клапаны.

Описание:

Действующими в стране нормами и правилами предписано, что в проектах должны быть предусмотрены мероприятия по защите от шума оборудования, используемого для жизнеобеспечения человека. К числу такого оборудования относятся системы вентиляции и кондиционирования воздуха.

Акустический расчет как основа для проектирования малошумной системы вентиляции (кондиционирования)

В. П. Гусев , доктор техн. наук, зав. лабораторией защиты от шума вентиляционного и инженерно-технологического оборудования (НИИСФ)

Действующими в стране нормами и правилами предписано, что в проектах должны быть предусмотрены мероприятия по защите от шума оборудования, используемого для жизнеобеспечения человека. К числу такого оборудования относятся системы вентиляции и кондиционирования воздуха.

Основой для проектирования шумоглушения систем вентиляции и кондиционирования воздуха является акустический расчет - обязательное приложение к проекту вентиляции любого объекта. Основные задачи такого расчета: определение октавного спектра воздушного, структурного вентиляционного шума в расчетных точках и его требуемого снижения путем сопоставления этого спектра с допустимым спектром по гигиеническим нормам. После подбора строительно-акустических мероприятий по обеспечению требуемого снижения шума проводится поверочный расчет ожидаемых уровней звукового давления в тех же расчетных точках с учетом эффективности этих мероприятий.

Приведенные ниже материалы не претендуют на полноту изложения методики акустического расчета вентиляционных систем (установок). Они содержат сведения, которые уточняют, дополняют или по-новому раскрывают различные аспекты этой методики на примере акустического расчета вентилятора как основного источника шума вентиляционной системы. Материалы будут использованы при подготовке свода правил по расчету и проектированию шумоглушения вентиляционных установок к новому СНиП .

Исходными данными для акустического расчета являются шумовые характеристики оборудования - уровни звуковой мощности (УЗМ) в октавных полосах со среднегеометрическими частотами 63, 125, 250, 500, 1 000, 2 000, 4 000, 8 000 Гц. Для ориентировочных расчетов иногда используют корректированные уровни звуковой мощности источников шума в дБА .

Расчетные точки располагаются в местах обитания человека, в частности, на месте установки вентилятора (в вентиляционной камере); в помещениях или в зонах, граничащих с местом установки вентилятора; в помещениях, обслуживаемых системой вентиляции; в помещениях, где воздуховоды проходят транзитом; в зоне устройства приема или выброса воздуха, или только приема воздуха для рециркуляции.

Расчетная точка находится в помещении, где установлен вентилятор

В общем случае уровни звукового давления в помещении зависят от звуковой мощности источника и фактора направленности излучения шума, количества источников шума, от расположения расчетной точки относительно источника и ограждающих строительных конструкций, от размеров и акустических качеств помещения.

Октавные уровни звукового давления, создаваемые вентилятором (вентиляторами) в месте установки (в венткамере), равны:

где Фi - фактор направленности источника шума (безразмерный);

S - площадь воображаемой сферы или ее части, окружающей источник и проходящей через расчетную точку, м 2 ;

B - акустическая постоянная помещения, м 2 .

Расчетная точка находится в помещении, смежном с помещением, где установлен вентилятор

Октавные уровни воздушного шума, проникающего через ограждение в изолируемое помещение, смежное с помещением, где установлен вентилятор, определяются звукоизолирующей способностью ограждений шумного помещения и акустическими качествами защищаемого помещения, что выражается формулой :

(3)

где L ш - октавный уровень звукового давления в помещении с источником шума, дБ;

R - изоляция от воздушного шума ограждающей конструкцией, через которую проникает шум, дБ;

S - площадь ограждающей конструкции, м 2 ;

B u - акустическая постоянная изолируемого помещения, м 2 ;

k - коэффициент, учитывающий нарушение диффузности звукового поля в помещении.

Расчетная точка находится в помещении, обслуживаемом системой

Шум от вентилятора распространяется по воздуховоду (воздушному каналу), частично затухает в его элементах и через воздухораспределительные и воздухоприемные решетки проникает в обслуживаемое помещение. Октавные уровни звукового давления в помещении зависят от величины снижения шума в воздушном канале и акустических качеств этого помещения:

(4)

где L Pi - уровень звуковой мощности в i-й октаве, излучаемой вентилятором в воздушный канал;

D L сетиi - затухание в воздушном канале (в сети) между источником шума и помещением;

D L помi - то же, что в формуле (1) - формула (2).

Затухание в сети (в воздушном канале) D L Р сети - сумма затуханий в ее элементах, последовательно расположенных по ходу звуковых волн. Энергетическая теория распространения звука по трубам предполагает, что эти элементы не влияют друг на друга. В действительности последовательность фасонных элементов и прямых участков образуют единую волновую систему, при которой на чистых синусоидальных тонах принцип независимости затухания в общем случае не может оправдываться. Вместе с тем, в октавных (широких) полосах частот стоячие волны, создаваемые отдельными синусоидальными составляющими, компенсируют друг друга, и поэтому энергетический подход, не учитывающий волновой картины в воздуховодах и рассматривающий поток звуковой энергии, можно считать оправданным.

Затухание на прямых участках воздуховодов из листового материала обусловлено потерями на деформацию стенок и излучение звука наружу. О снижении уровня звуковой мощности D L Р на 1 м длины прямых участков металлических воздуховодов в зависимости от частоты можно судить по данным рис. 1.

Как видно, в воздуховодах прямоугольного сечения затухание (снижение УЗМ) с ростом частоты звука уменьшается, а круглого сечения возрастает. При наличии теплоизоляции на металлических воздуховодах приведенные на рис. 1 значения следует увеличивать примерно в два раза.

Понятие затухание (снижение) уровня потока звуковой энергии нельзя отождествлять с понятием изменения уровня звукового давления в воздушном канале. При движении звуковой волны по каналу общее количество энергии, которую она несет, уменьшается, но это не обязательно связано с уменьшением уровня звукового давления. В сужающемся канале, несмотря на затухание общего потока энергии, уровень звукового давления может увеличиваться вследствие увеличения плотности звуковой энергии. В расширяющемся канале, наоборот, плотность энергии (и уровень звукового давления) может уменьшаться быстрее, чем общая звуковая мощность. Затухание звука на участке с переменным сечением равно :

(5)

где L 1 и L 2 - средние уровни звукового давления в начальном и конечном по ходу звуковых волн сечениях участка канала;

F 1 и F 2 - площади поперечных сечений соответственно в начале и конце участка канала.

Затухание на поворотах (в коленах, отводах) с гладкими стенками, поперечное сечение которых меньше длины волны, определяется реактивным сопротивлением типа дополнительной массы и возникновением мод более высокого порядка. Кинетическая энергия потока на повороте без изменения сечения канала увеличивается из-за возникающей неравномерности поля скоростей. Прямоугольный поворот действует подобно фильтру низких частот. Величину снижения шума на повороте в диапазоне плоских волн дает точное теоретическое решение :

(6)

где K - модуль коэффициента прохождения звука.

При a ≥ l /2 величина K равна нулю и падающая плоская звуковая волна теоретически полностью отражается поворотом канала. Максимальное снижение шума наблюдается, когда глубина поворота равна примерно половине длины волны. О величине теоретического модуля коэффициента прохождения звука через прямоугольные повороты можно судить по рис. 2.

В реальных конструкциях по данным работ максимальное затухание равно 8-10 дБ, когда в ширине канала укладывается половина длины волны. С повышением частоты затухание уменьшается до 3-6 дБ в области длин волн, близких по величине к удвоенной ширине канала. Затем оно снова плавно возрастает на высоких частотах, достигая 8-13 дБ. На рис. 3 показаны кривые затухания шума на поворотах каналов для плоских волн (кривая 1) и для случайного, диффузного падения звука (кривая 2). Эти кривые получены на основе теоретических и экспериментальных данных. Наличие максимума снижения шума при a = l /2 можно использовать для снижения шума с низкочастотными дискретными составляющими, настраивая размеры каналов на поворотах на интересующую частоту.

Снижение шума на поворотах, угол которых меньше 90°, приближенно пропорционально величине угла поворота. Например, уменьшение уровня шума на повороте с углом 45° равно половине его уменьшения на повороте с углом 90°. На поворотах с углом меньше 45° уменьшение шума не учитывается. Для плавных поворотов и прямых колен воздуховодов с направляющими лопатками снижение шума (уровня звуковой мощности) можно определить, пользуясь кривыми рис. 4.

В разветвлениях каналов, поперечные размеры которых меньше половины длины звуковой волны, физические причины затухания аналогичны причинам затухания в коленах и отводах. Это затухание определяется следующим образом (рис. 5).

На основании уравнения неразрывности среды:

Из условия непрерывности давления (r п + r 0 = r пр) и уравнения (7) прошедшая звуковая мощность может быть представлена выражением

а снижение уровня звуковой мощности при площади сечения ответвления

(11)

(12)

(13)

При внезапном изменении сечения канала с поперечными размерами меньше длин полуволн (рис. 6 а), снижение уровня звуковой мощности может быть определено так же, как при разветвлениях.

Расчетная формула для такого изменения сечения канала имеет вид

(14)

где m - отношение большей площади сечения канала к меньшей.

Снижение уровней звуковой мощности, когда размеры каналов больше длины полуволн неплоских волн при внезапном сужении канала, равно

Если канал расширяется или плавно сужается (рис. 6 б и 6 г), то снижение уровня звуковой мощности равно нулю, т. к. отражение волн с длиной, меньшей размеров канала, не происходит.

В простых элементах вентиляционных систем принимают следующие величины снижения на всех частотах: калориферы и воздухоохладители 1,5 дБ, центральные кондиционеры 10 дБ, сетчатые фильтры 0 дБ, место примыкания вентилятора к сети воздуховодов 2 дБ .

Отражение звука от конца воздуховода происходит в том случае, если поперечный размер воздуховода меньше длины звуковой волны (рис. 7).

Если распространяется плоская волна, то в большом воздуховоде отражение отсутствует, и можно считать, что потерь на отражение нет. Однако если проем соединяет помещение больших размеров и открытое пространство, то в проем попадают только диффузные звуковые волны, направленные к проему, энергия которых равна четвертой части энергии диффузного поля. Поэтому в данном случае происходит ослабление уровня интенсивности звука на 6 дБ.

Характеристики направленности излучения звука воздухораспределительными решетками указаны на рис. 8.

При расположении источника шума в пространстве (например, на колонне в большом помещении) S = 4p r 2 (излучение в полную сферу); в средней части стены, перекрытия S = 2p r 2 (излучение в полусферу); в двугранном углу (излучение в 1/4 сферы) S = p r 2 ; в трехгранном углу S = p r 2 /2.

Ослабление уровня шума в помещении определяется формулой (2). Расчетная точка выбирается в месте постоянного пребывания людей, ближайшем к источнику шума, на расстоянии 1,5 м от пола. Если шум в расчетной точке создается несколькими решетками, то акустический расчет производится с учетом их суммарного воздействия.

Когда источником шума является участок транзитного воздуховода, проходящего через помещение, исходными данными для расчета по формуле (1) служат октавные уровни звуковой мощности излучаемого им шума, определяемые по приближенной формуле:

(16)

где L pi - уровень звуковой мощности источника в i-й октавной полосе частот, дБ;

D L’ Рсетиi - затухание в сети между источником и рассматриваемом транзитным участком, дБ;

R Ti - звукоизоляция конструкции транзитного участка воздуховода, дБ;

S T - площадь поверхности транзитного участка, выходящая в помещение, м 2 ;

F T - площадь поперечного сечения участка воздуховода, м 2 .

Формула (16) не учитывает повышения плотности звуковой энергии в воздуховоде за счет отражений; условия падения и прохождения звука через конструкцию воздуховода существенно отличаются от прохождения диффузного звука через ограждения помещения.

Расчетные точки находятся на прилегающей к зданию территории

Шум вентилятора распространяется по воздуховоду и излучается в окружающее пространство через решетку или шахту, непосредственно через стенки корпуса вентилятора или открытый патрубок при установке вентилятора снаружи здания.

При расстоянии от вентилятора до расчетной точки много больше его размеров источник шума можно считать точечным.

В этом случае октавные уровни звукового давления в расчетных точках определяются по формуле

(17)

где L Pоктi - октавный уровень звуковой мощности источника шума, дБ;

D L Pсетиi - суммарное снижение уровня звуковой мощности по пути распространения звука в воздуховоде в рассматриваемой октавной полосе, дБ;

D L нi - показатель направленности излучения звука, дБ;

r - расстояние от источника шума до расчетной точки, м;

W - пространственный угол излучения звука;

b a - затухание звука в атмосфере, дБ/км.

Если имеется ряд из нескольких вентиляторов, решеток или другой протяженный источник шума ограниченных размеров, то третий член в формуле (17) принимается равным 15 lgr .

Расчет структурного шума

Структурный шум в помещениях, смежных с вентиляционными камерами, возникает в результате передачи динамических сил от вентилятора на перекрытие. Октавный уровень звукового давления в смежном изолируемом помещении определяют по формуле

Для вентиляторов, расположенных в техническом помещении вне пределов перекрытия над изолируемым помещением:

(20)

где L Pi - октавный уровень звуковой мощности воздушного шума, излучаемого вентилятором в вентиляционную камеру, дБ;

Z c - суммарное волновое сопротивление элементов виброизоляторов, на которых установлена холодильная машина, Н с/м;

Z пер - входной импеданс перекрытия - несущей плиты, в отсутствие пола на упругом основании, плиты пола - при его наличии, Н с/м;

S - условная площадь перекрытия технического помещения над изолируемым помещением, м 2 ;

S = S 1 при S 1 > S u /4; S = S u /4; при S 1 ≤ S u /4, или если техническое помещение не находится над изолируемым помещением, но имеет одну общую с ним стену;

S 1 - площадь технического помещения над изолируемым помещением, м 2 ;

S u - площадь изолируемого помещения, м 2 ;

S в - общая площадь технического помещения, м 2 ;

R - собственная изоляция воздушного шума перекрытием, дБ.

Определение требуемого снижения шума

Требуемое снижение октавных уровней звукового давления рассчитывают отдельно для каждого источника шума (вентилятора, фасонных элементов, арматуры), но при этом учитывают число однотипных по спектру звуковой мощности источников шума и величины уровней звукового давления, создаваемых каждым из них в расчетной точке. В общем случае требуемое снижение шума для каждого источника должно быть таким, чтобы суммарные уровни во всех октавных полосах частот от всех источников шума не превышали допустимые уровни звукового давления .

При наличии одного источника шума требуемое снижение октавных уровней звукового давления определяется по формуле

где n - общее количество принимаемых в расчет источников шума.

В общее количество источников шума n при определении D L трi требуемого снижения октавных уровней звукового давления на территории городской застройки следует включать все источники шума, которые создают в расчетной точке уровни звукового давления, отличающиеся менее чем на 10 дБ.

При определении D L трi для расчетных точек в помещении, защищаемом от шума системы вентиляции, в общее количество источников шума следует включать:

При расчете требуемого снижения шума вентилятора - количество систем, обслуживающих помещение; шум, генерируемый воздухораспределительными устройствами и фасонными элементами, при этом не учитывается;

При расчете требуемого снижения шума, генерируемого воздухораспределительными устройствами рассматриваемой вентиляционной системы, - количество систем вентиляции, обслуживающих помещение; шум вентилятора, воздухораспределительных устройств и фасонных элементов при этом не учитывается;

При расчете требуемого снижения шума, генерируемого фасонными элементами и воздухораспределительными устройствами рассматриваемого ответвления, - количество фасонных элементов и дросселей, уровни шума которых отличаются один от другого менее чем на 10 дБ; шум вентилятора и решеток при этом не учитывается.

Вместе с тем в общем количестве принимаемых в расчет источников шума не учитываются источники шума, создающие в расчетной точке уровень звукового давления на 10 дБ меньшие, чем допустимый, при их количестве не более 3 и на 15 дБ меньше допустимого при их числе не более 10.

Как видно, акустический расчет - не простая задача. Необходимую точность ее решения обеспечивают специалисты-акустики. От точности выполняемого акустического расчета зависит эффективность шумоглушения и стоимость его осуществления. Если величина рассчитанного требуемого снижения шума занижена, то мероприятия будут недостаточно эффективны. В этом случае потребуется устранение недостатков на действующем объекте, что неизбежно связано с существенными материальными затратами. При завышенном требуемом снижении шума неоправданные затраты закладываются непосредственно в проект. Так, только за счет установки глушителей, длина которых больше требуемой на 300-500 мм, дополнительные затраты на средних и крупных объектах могут составить 100-400 тысяч рублей и более.

Литература

1. СНиП II-12-77. Защита от шума. М.: Стройиздат, 1978.

2. СНиП 23-03-2003. Защита от шума. Госстрой России, 2004.

3. Гусев В. П. Акустические требования и правила проектирования малошумных систем вентиляции // АВОК. 2004. № 4.

4. Руководство по расчету и проектированию шумоглушения вентиляционных установок. М.: Стройиздат, 1982.

5. Юдин Е. Я., Терехин А. С. Борьба с шумом шахтных вентиляционных установок. М.: Недра, 1985.

6. Снижение шума в зданиях и жилых районах. Под ред. Г. Л. Осипова, Е. Я. Юдина. М.: Стройиздат, 1987.

7. Хорошев С. А., Петров Ю. И., Егоров П. Ф. Борьба с шумом вентиляторов. М.: Энергоиздат, 1981.

Загрузка...
Top