Германий — редкий и полезный полуметалл. Характеристика химического элемента германия

ГЕРМАНИЙ, Ge (от лат. Germania — Германия * а. germanium; н. Germanium; ф. germanium; и. germanio), — химический элемент IV группы периодической системы Менделеева, атомный номер 32, атомная масса 72,59. Природный германий состоит из 4 стабильных изотопов 70 Ge (20,55%), 72 Ge (27,37%), 73 Ge (7,67%), 74 Ge (36,74%) и одного радиоактивного 76 Ge (7,67%) с периодом полураспада 2.10 6 лет. Открыт в 1886 немецким химиком К. Винклером в минерале аргиродите; был предсказан в 1871 Д. Н. Менделеевым (экасилиций).

Германий в природе

Германий относится к . Распространённость германия в (1-2).10 -4 %. В качестве примеси встречается в минералах кремния, в меньшей степени в минералах и . Собственные минералы германия очень редки: сульфосоли — аргиродит, германит, реньерит и некоторые другие; двойной гидратированный оксид германия и железа — штоттит; сульфаты — итоит, флейшерит и некоторые др. Промышленного значения они практически не имеют. Германий накапливается в гидротермальных и осадочных процессах, где реализуется возможность отделения его от кремния. В повышенных количествах (0,001-0,1%) встречается в , и . Источниками германия являются полиметаллические руды, ископаемые угли и некоторые типы вулканогенно-осадочных месторождений . Основное количество германия получают попутно из подсмольных вод при коксовании углей, из золы энергетических углей, сфалеритовых и магнетитовых . Германий извлекается кислотным , возгонкой в восстановительной среде, сплавлением с едким натром и др. Концентраты германия обрабатываются соляной кислотой при нагревании, конденсат очищается и подвергается гидролитическому разложению с образованием диоксида; последний восстанавливается водородом до металлического германия, который очищается методами фракционной и направленной кристаллизации, зонной плавки.

Применение германия

Германий применяют в радиоэлектронике и электротехнике как полупроводниковый материал для изготовления диодов и транзисторов. Из германия изготовляют линзы для ИК оптики, фотодиоды, фоторезисторы, дозиметры ядерных излучений, анализаторы рентгеновской спектроскопии, преобразователи энергии радиоактивного распада в электрическую и т.д. Сплавы германия с некоторыми металлами, отличающиеся повышенной стойкостью к кислым агрессивным средам, используют в приборостроении, машиностроении и металлургии. Некоторые сплавы германия с другими химическими элементами — сверхпроводники.

Германий

ГЕРМА́НИЙ -я; м. Химический элемент (Ge), твёрдое вещество серовато-белого цвета с металлическим блеском (является основным полупроводниковым материалом). Пластинка германия.

Герма́ниевый, -ая, -ое. Г-ое сырьё. Г. слиток.

герма́ний

(лат. Germanium), химический элемент IV группы периодической системы. Название от латинского Germania - Германия, в честь родины К. А. Винклера. Серебристо-серые кристаллы; плотность 5,33 г/см 3 , t пл 938,3ºC. В природе рассеян (собственные минералы редки); добывают из руд цветных металлов. Полупроводниковый материал для электронных приборов (диоды, транзисторы и др.), компонент сплавов, материал для линз в ИК-приборах, детекторов ионизирующего излучения.

ГЕРМАНИЙ

ГЕРМА́НИЙ (лат. Germanium), Gе (читается «гертемпманий»), химический элемент с атомным номером 32, атомная масса 72,61. Природный германий состоит из пяти изотопов с массовыми числами 70 (содержание в природной смеси 20,51% по массе), 72 (27,43%), 73 (7,76%), 74 (36,54%), и 76 (7,76%). Конфигурация внешнего электронного слоя 4s 2 p 2 . Степени окисления +4, +2 (валентности IV, II). Расположен в группе IVA, в 4 периоде в периодической системе элементов.
История открытия
Был открыт К. А. Винклером (см. ВИНКЛЕР Клеменс Александр) (и назван в честь его родины - Германии) в 1886 при анализе минерала аргиродита Ag 8 GeS 6 после того, как существование этого элемента и некоторые его свойства были предсказаны Д. И. Менделеевым (см. МЕНДЕЛЕЕВ Дмитрий Иванович) .
Нахождение в природе
Содержание в земной коре 1,5·10 -4 % по массе. Относится к рассеянным элементам. В природе в свободном виде не встречается. Содержится в виде примеси в силикатах, осадочных железных, полиметаллических, никелевых и вольфрамовых рудах, углях, торфе, нефтях, термальных водах и водорослях. Важнейшие минералы: германит Cu 3 (Ge,Fe,Ga)(S,As) 4 , стоттит FeGe(OH) 6 , плюмбогерманит (Pb,Ge,Ga) 2 SO 4 (OH) 2 ·2H 2 O, аргиродит Ag 8 GeS 6 , рениерит Cu 3 (Fe,Ge,Zn)(S,As) 4 .
Получение германия
Для получения германия используют побочные продукты переработки руд цветных металлов, золу от сжигания углей, некоторые продукты коксохимии. Сырье, содержащее Ge, обогащают флотацией. Затем концентрат переводят в оксид GeO 2 , который восстанавливают водородом (см. ВОДОРОД) :
GeO 2 + 4H 2 = Ge + 2H 2 O
Германий полупроводниковой чистоты с содержанием примесей 10 -3 -10 -4 % получают зонной плавкой (см. ЗОННАЯ ПЛАВКА) , кристаллизацией (см. КРИСТАЛЛИЗАЦИЯ) или термолизом летучего моногермана GeH 4:
GeH 4 = Ge + 2H 2 ,
который образуется при разложении кислотами соединений активных металлов с Ge - германидов:
Mg 2 Ge + 4HCl = GeH 4 – + 2MgCl 2
Физические и химические свойства
Германий - вещество серебристого цвета с металлическим блеском. Кристаллическая решетка устойчивой модификации (Ge I), кубическая, гранецентрированная типа алмаза, а = 0,533 нм (при высоких давлениях получены три другие модификации). Температура плавления 938,25 °C, кипения 2850 °C, плотность 5,33 кг/дм 3 . Обладает полупроводниковыми свойствами, ширина запрещенной зоны 0,66 эВ (при 300 К). Германий прозрачен для инфракрасного излучения с длиной волны больше 2 мкм.
По химическим свойствам Ge напоминает кремний (см. КРЕМНИЙ) . При обычных условиях устойчив к кислороду (см. КИСЛОРОД) , парам воды, разбавленным кислотам. В присутствии сильных комплексообразователей или окислителей, при нагревании Ge реагирует с кислотами:
Ge + H 2 SO 4 конц = Ge(SO 4) 2 + 2SO 2 + 4H 2 O,
Ge + 6HF = H 2 + 2H 2 ,
Ge + 4HNO 3 конц. = H 2 GeO 3 + 4NO 2 + 2H 2 O
Ge реагирует с царской водкой (см. ЦАРСКАЯ ВОДКА) :
Ge + 4HNO 3 + 12HCl = GeCl 4 + 4NO + 8H 2 O.
С растворами щелочей Ge взаимодействует в присутствии окислителей:
Ge + 2NaOH + 2H 2 O 2 = Na 2 .
При нагревании на воздухе до 700 °C Ge загорается. Ge легко взаимодействует с галогенами (см. ГАЛОГЕНЫ) и серой (см. СЕРА) :
Ge + 2I 2 = GeI 4
С водородом (см. ВОДОРОД) , азотом (см. АЗОТ) , углеродом (см. УГЛЕРОД) германий непосредственно в реакции не вступает, соединения с этими элементами получают косвенным путем. Например, нитрид Ge 3 N 4 образуется при растворении дииодида германия GeI 2 в жидком аммиаке:
GeI 2 + NH 3 жидк -> n -> Ge 3 N 4
Оксид германия (IV), GeO 2 , - белое кристаллическое вещество, существующее в двух модификациях. Одна из модификаций частично растворима в воде с образование сложных германиевых кислот. Проявляет амфотерные свойства.
С щелочами GeO 2 взаимодействует как кислотный оксид:
GeO 2 + 2NaOH = Na 2 GeO 3 + H 2 O
GeO 2 взаимодействует с кислотами:
GeO 2 + 4HCl = GeCl 4 + 2H 2 O
Тетрагалогениды Ge - неполярные соединения, легко гидролизующиеся водой.
3GeF 4 + 2H 2 O = GeO 2 + 2H 2 GeF 6
Тетрагалогениды получают прямым взаимодействием:
Ge + 2Cl 2 = GeCl 4
или термическим разложением:
BaGeF 6 = GeF 4 ­ + BaF 2
Гидриды германия по химическим свойствам подобны гидридам кремния, но моногерман GeH 4 более устойчив, чем моносилан SiH 4 . Германы образуют гомологические ряды Ge n H 2n+2 , Ge n H 2n и другие, но эти ряды короче, чем у силанов.
Моногерман GeH 4 - газ, устойчивый на воздухе, не реагирующий с водой. При длительном хранении разлагается на H 2 и Ge. Получают моногерман восстановлением диоксида германия GeO 2 борогидридом натрия NaBH 4:
GeO 2 + NaBH 4 = GeH 4 ­ + NaBO 2 .
Очень неустойчивый монооксид GeO образуется при умеренном нагревании смеси германия и диоксида GeO 2:
Ge + GeO 2 = 2GeO.
Соединения Ge (II) легко диспропорционируют с выделением Ge:
2GeCl 2 -> Ge + GeCl 4
Дисульфида германия GeS 2 - белое аморфное или кристаллическое вещество, получается осаждением H 2 S из кислых растворов GeCl 4:
GeCl 4 + 2H 2 S = GeS 2 Ї + 4HCl
GeS 2 растворяется в щелочах и сульфидах аммония или щелочных металлов:
GeS 2 + 6NaOH = Na 2 + 2Na 2 S,
GeS 2 + (NH 4) 2 S = (NH 4) 2 GeS 3
Ge может входить в состав органических соединений. Известны (CH 3) 4 Ge, (C 6 H 5) 4 Ge, (CH 3) 3 GeBr, (C 2 H 5) 3 GeOH и другие.
Применение
Германий - полупроводниковый материал, применяется в технике и радиоэлектронике при производстве транзисторов и микросхем. Тонкие пленки Ge, нанесенные на стекло, применяют в качестве сопротивлений в радарных установках. Сплавы Ge с металлами используются в датчиках и детекторах. Диоксид германия применяют в производстве стекол, пропускающих инфракрасное излучение.


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "германий" в других словарях:

    Химический элемент, открытый в 1886 г. в редком минерале аргиродите, найденном в Саксонии. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. германий (назв. в честь родины ученого, открывшего элемент) хим. элемент,… … Словарь иностранных слов русского языка

    - (Germanium), Ge, химический элемент IV группы периодической системы, атомный номер 32, атомная масса 72,59; неметалл; полупроводниковый материал. Германий открыт немецким химиком К. Винклером в 1886 … Современная энциклопедия

    германий - Ge Элемент IV группы Периодич. системы; ат. н. 32, ат. м. 72,59; тв. вещ во с металлич. блеском. Природный Ge — смесь пяти стабильных изотопов с массовыми числами 70, 72, 73, 74 и 76. Существование и свойства Ge предсказал в 1871 г. Д. И.… … Справочник технического переводчика

    Германий - (Germanium), Ge, химический элемент IV группы периодической системы, атомный номер 32, атомная масса 72,59; неметалл; полупроводниковый материал. Германий открыт немецким химиком К. Винклером в 1886. … Иллюстрированный энциклопедический словарь

    - (лат. Germanium) Ge, химический элемент IV группы периодической системы, атомный номер 32, атомная масса 72,59. Назван от латинского Germania Германия, в честь родины К. А. Винклера. Серебристо серые кристаллы; плотность 5,33 г/см³, tпл 938,3 … Большой Энциклопедический словарь

    - (символ Ge), бело серый металлический элемент IV группы периодической таблицы МЕНДЕЛЕЕВА, в которой были предсказаны свойства еще не открытых элементов, в частности, германия (1871 г.). Открыт элемент в 1886 г. Побочный продукт выплавки цинковых… … Научно-технический энциклопедический словарь

    Ge (от лат. Germania Германия * a. germanium; н. Germanium; ф. germanium; и. germanio), хим. элемент IV группы периодич. системы Менделеева, ат.н. 32, ат. м. 72,59. Природный Г. состоит из 4 стабильных изотопов 70Ge (20,55%), 72Ge… … Геологическая энциклопедия

    - (Ge), синтетич. монокристалл, ПП, точечная группа симметрии m3m, плотность 5,327 г/см3, Tпл=936 °С, тв. по шкале Мооса 6, ат. м. 72,60. Прозрачен в ИК области l от 1,5 до 20 мкм; оптически анизотропен, для l=1,80 мкм коэфф. преломления n=4,143.… … Физическая энциклопедия

    Сущ., кол во синонимов: 3 полупроводник (7) экасилиций (1) элемент (159) … Словарь синонимов

    ГЕРМАНИЙ - хим. элемент, символ Ge (лат. Germanium), ат. н. 32, ат. м. 72,59; хрупкое серебристо серое кристаллическое вещество, плотность 5327 кг/м3, bил = 937,5°С. В природе рассеян; добывают его главным образом при переработке цинковой обманки и… … Большая политехническая энциклопедия

Германий - чрезвычайно ценный для человека элемент таблицы Менделеева. Его уникальные свойства, как полупроводника, позволили создать диоды, широко используемые в различных измерительных приборах и радиоприемниках. Он нужен для производства линз и оптического волокна.

Однако технические успехи - это только часть достоинств этого элемента. Органические соединения германия обладают редкими терапевтическими свойствами, оказывая широкое биологическое воздействие на здоровье и самочувствие человека, а эта особенность дороже любых драгоценных металлов.

История открытия германия

Дмитрий Иванович Менделеев, анализируя свою периодическую таблицу элементов, в 1871 году предположил, что в ней не хватает еще одного элемента, принадлежащего к IV группе. Он описал его свойства, подчеркнул сходство с кремнием и назвал экасилиций.

Через несколько лет, в 1886 году, в феврале, профессор горной академии города Фрейберг открыл аргиродит - новое соединение серебра. Его полный анализ было поручено сделать Клеменсу Винклеру, профессору технической химии и лучшему аналитику академии. После изучения нового минерала, он выделил из него 7% веса, как отдельное неопознанное вещество. Тщательное изучение его свойств показало, что перед ними экасилиций, предсказанный Менделеевым. Важно, что способ выделения экасилиция, использованный Винклером, до сих пор применяется при его промышленном получении.

История названия германия

Экасилиций в периодической таблице Менделеева занимает 32 позицию. Сначала Клеменс Винклер хотел дать ему имя Нептун.в честь планеты, которую тоже сначала предсказали, а обнаружили после. Однако выяснилось, что один ложно открытый компонент уже так называли и могла возникать ненужная путаницы и споры.

В результате, Винклер выбрал для него имя Германий в честь своей страны, чтобы снять все разногласия. Это решение Дмитрий Иванович поддержал, закрепив такое название за своим "детищем".

Как выглядит германий

Этот дорогой и редкий элемент, как стекло, хрупкий. Стандартный германиевый слиток выглядит, как цилиндр диаметром от 10 до 35 мм. Цвет германия зависит от обработки его поверхности и может быть черным, похожим на сталь или серебристым. Его внешний вид легко перепутать с кремнием – его самым ближайшим родственником и конкурентом.

Чтобы разглядеть мелкие германиевые детали в приборах нужны специальные средства увеличения.

Применение органического германия в медицине

Органическое соединение германия синтезировал японец, доктор К. Асаи в 1967 году. Он доказал наличие у него противоопухолевых свойств. Продолжение исследований доказало, что разные соединения германия обладают такими важными свойствами для человека, как обезболивание, снижение артериального давления, снижение риска анемии, укрепление иммунитета и уничтожения вредоносных бактерий.

Направления влияния германия в организме:

  • Способствует насыщению тканей кислородом и ,
  • Ускоряет заживление ран,
  • Способствует очищению клеток и тканей от токсинов и ядов,
  • Улучшает состояние центральной нервной системы и ее функционирование,
  • Ускоряет восстановление после тяжелой физической нагрузки,
  • Повышает общую работоспособность человека,
  • Усиливает защитные реакции всей иммунной системы.

Роль органического германия в иммунной системе и в переносе кислорода

Способность германия переносить кислород на уровне тканей организма особенно ценна для предупреждения гипоксии (кислородной недостаточности). Это также снижает вероятность развития кровяной гипоксии, которая возникает при уменьшении количества гемоглобина в эритроцитах. Доставка кислорода в любую клетку позволяет снизить опасность кислородного голодания и спасти от гибели наиболее чувствительные к нехватке кислорода клетки: головного мозга, тканей почек и печени, мышц сердца.

Германий |32 | Ge| — Цена

Германий (Ge) — рассеянный редкий металл , атомный номер — 32, атомная масса-72,6, плотность:
твёрдый при 25ОС — 5.323 г/см3;
жидкий при 100ОС — 5.557г/см3;
Температура плавления — 958,5ОС, коэффициент линейного расширения α.106,при температуре, КО:
273-573— 6.1
573-923— 6.6
Твёрдость по минералогической шкале-6-6,5.
Удельное электросопротивление монокристаллического высокочистого германия (при 298ОК), Ом.м-0,55-0,6..
Германий был открыт в 1885 году и в начале получен в виде сульфида. Этот металл был предсказан Д.И.Менделеевым в 1871 году, с точным указанием его свойств и назван им экосилицием. Германий, назван учёными исследователями, в честь страны в которой он был открыт.
Германий –серебристо-белый металл , по внешнему виду похож на олово, хрупкий при нормальных условиях. Поддаётся пластической деформации при температуре свыше 550ОС. Германий обладает полупроводниковыми свойствами . Удельное электросопротивление германия зависит от чистоты— примеси его резко снижают. Германий оптически прозрачен в инфракрасной области спектра, обладает высоким коэффициентом преломления, что позволяет применять его для изготовления различных оптических систем.
Германий стоек на воздухе при температурах до 700ОС, при более высоких температурах-окисляется, а выше температуры плавления-сгорает, образуя диоксид германия. Водород с германием не взаимодействует, а при температуре плавления, расплав германия поглощает кислород. Германий не реагирует с азотом. С хлором, образует при комнатной температуре, хлорид германия.
Германий не взаимодействует с углеродом, устойчив в воде, медленно взаимодействует с кислотами, легко растворяется в царской водке. Растворы щелочей слабо действуют на германий. Германий сплавляется со всеми металлами.
Несмотря на то, что германия в природе больше чем свинца, производство его ограничено из-за его сильной распылённости в земной коре, а стоимость германия достаточно высока. Германий образует минералы аргиродит и германит, однако они мало используются для его получения. Германий извлекается попутно при переработке сульфидных полиметаллических руд, некоторых железных руд, в которых содержится до 0,001% германия, из подсмольных вод при коксовании угля.

ПОЛУЧЕНИЕ.

Получение германия из различного сырья осуществляется сложными способами, при которых конечным продуктом является четырёххлористый германий или диоксид германия, из которого получают металлический германий. Его очищают и,далее, методом зонной плавки выращивают германиевые монокристаллы с заданными электрофизическими свойствами. В промышленности получают монокристаллический и поликристаллический германий.
Полупродукты полученные переработкой минералов содержат незначительное количество германия и для их обогащения применяются различные методы пиро- и гидрометаллургической обработки. Пирометаллургические способы основаны на возгонке летучих соединений содержащих германий, гидрометаллургические способы-на избирательном растворении соединений германия.
Для получения концентратов германия, продукты пирометаллургического обогащения(возгоны, огарки) обрабатывают кислотами и переводят германий в раствор, из которого получают концентрат различными методами (осаждением, соосаждением и сорбцией, электрохимическими методами). В концентрате содержится от 2 до 20% германия, из которого выделяют чистый диоксид германия. Диоксид германия восстанавливают водородом, однако, полученный металл недостаточно чист для полупроводниковых приборов и поэтому он подвергается очистке кристаллографическими методами (направленная кристаллизация-зонная очистка-получение монокристалла). Направленная кристаллизация совмещается с восстановлением диоксида германия водородом. Расплавленный металл постепенно выдвигают из горячей зоны в холодильник. Металл кристаллизуется постепенно по длине слитка. В конечной части слитка собираются примеси и её удаляют. Оставшийся слиток разрезают на куски, которые загружают в зонную очистку.
В результате зонной очистки получают слиток, в котором чистота металла различна по его длине. Слиток также разрезают и отдельные его части выводятся из процесса. Таким образом, при получении монокристаллического германия из зоноочищенного, прямой выход составляет не более 25%.
Для получения полупроводниковых приборов монокристалл германия разрезают на пластины, из которых выкраивают миниатюрные детали, которые затем шлифуют и полируют. Эти детали и являются конечным продуктом для создания полупроводниковых приборов.

ПРИМЕНЕНИЕ.

  • Благодаря своим полупроводниковым свойствам германий широко используется в радиоэлектронике для изготовления кристаллических выпрямителей (диодов) и кристаллических усилителей (триодов), для вычислительной техники, телемеханики, радаров и т.п.

  • Триоды из германия используются для усиления, генерирования и преобразования электрических колебаний.

  • В радиотехнике используются германиевые плёночные сопротивления.

  • Германий применяется в фотодиодах и фотосопротивлениях, для изготовления термисторов.

  • В ядерной технике используются германиевые детекторы гамма-излучений, а в приборах инфракрасной техники — германиевые линзы, легированные золотом.

  • Германий добавляют к сплавам для высокочувствительных термопар.

  • Германий используется в качестве катализатора при производстве искусственных волокон.

  • В медицине изучают некоторые органические соединения германия, предполагая, что они могут быть биологически активными и способствовать задержанию развития злокачественных опухолей, понижению артериального давления, обезболиванию.

Загрузка...
Top