Применение таллия. Отравление таллием

В истории открытия химических элементов таких как таллий немало парадоксов. Случалось, что поисками еще неизвестного элемента занимался один исследователь, а находил его другой. Иногда несколько ученых «шли параллельным курсом», и тогда после открытия (а к нему всегда кто-то приходит чуть раньше других) возникали приоритетные споры. Иногда же случалось, что новый элемент давал знать о себе вдруг, неожиданно. Именно так был открыт элемент № 81 - таллий.
В марте 1861 г. английский ученый Уильям Крукс исследовал пыль, которую улавливали на одном из серно-кислотных производств. Крукс полагал, что эта пыль должна содержать селен и теллур - аналоги серы. Селен он нашел, а вот теллура обычными химическими методами обнаружить не смог. Тогда Крукс решил воспользоваться новым для того времени и очень чувствительным методом спектрального анализа. В спектре он неожиданно для себя обнаружил новую линию.ветло-зеленого цвета, которую нельзя было приписать ни одному из известных элементов. Эта яркая линия была первой «весточкой» нового элемента. Благодаря ей он был обнаружен и благодаря ей назван по-латыни thallus - «распускающаяся ветка». Спектральная линия цвета молодой листвы оказалась «визитной карточкой» таллия.

В греческом языке (а большинство названий элементов берут начало в латыни или в греческом) почти так же звучит слово, которое на русский переводится как «выскочка». действительно оказался выскочкой - его не искали, а он нашелся...
Элемент со странностями
Больше 30 лет прошло после открытия Крукса, а таллий все еще оставался одним из наименее изученных элементов. Его искали в природе и находили, но, как правило, в минимальных концентрациях. Лишь в 1896 г. русский ученый И. А. Антипов обнаружил повышенное содержание таллия в силезских марказитах .


О таллии в то время говорили как об элементе редком, рассеянном и еще - как об элементе со странностями. Почти все это справедливо и в наши дни. Только таллий не так уж редок - содержание его в земной коре 0,0003% - намного больше, чем, например, золота, серебра или . Найдены и собственные минералы этого элемента - очень редкие минералы лорандит TlASS2, врбаит Tl(As, Sb) 3 S 5 и другие. Но ни одно месторождние минералов таллия на Земле не представляет интереса для промышленности. Получают этот элемент при переработке различных веществ и руд - как побочный продукт. Он действительно оказался очень рассеян.
И странностей в его свойствах, как говорится, хоть отбавляй. С одной стороны, таллий сходен со щелочными металлами. И в то же время он чем-то похож на серебро, а чем-то на свинец и олово . Судите сами: подобно калию и натрию, таллий обычно проявляет валентность 1+, гидроокись одновалентного таллия ТЮН - сильное основание, хорошо растворимое в воде. Как и щелочные металлы, таллий способен образовывать полииодиды, полисульфиды, алкоголяты... Зато слабая растворимость в воде хлорида, бромида и иодида одновалентного таллия роднит этот элемент с серебром. А но внешнему виду, плотности, твердости, температуре плавления - по всему комплексу физических свойств - таллий больше всего напоминает свинец.
И при этом он занимает место в III группе периодической системы, в одной подгруппе с галлием и индием, и свойства элементов этой подгруппы изменяются вполне закономерно.
Помимо валентности 1+, он может проявлять и естественную для элемента III группы валентность 3+. Как правило, соли трехвалентного таллия труднее рассворить, чем аналогичные соли таллия одновалентного. Последние, кстати, изучены лучше и имеют большее практическое значение.
Но есть соединения, в состав которых входит и тот и другой таллий. Например, способны реагировать между собой галогениды одно- и трехвалентного таллия. И тогда возникают любопытные комплексные соединения, в частности Тl1+ [Тl3+Сl 2 Вг 2 ]~. В нем одновалентный таллий выступает в качестве катиона, а трехвалентный входит в состав комплексного аниона.
Подчеркивая сочетание различных свойств в этом элементе, французский химик Дюма писал: «Не будет преувеличением, если с точки зрения общепринятой классификации металлов мы скажем, что но объединяет в себе противоположные свойства, которые позволяют называть его парадоксальным металлом». Далее Дюма утверждает, что среди металлов противоречивый таллий занимает такое же место, какое занимает утконос среди животных. И в то же время Дюма (а он был одним из первых исследователей элемента № 81) верил, что «таллию суждено сделать эпоху в истории химии».
Эпохи он пока не сделал и не сделает, наверное. Но практическое применение он нашел (хотя и не сразу). Для некоторых отраслей промышленности и науки этот элемент по-настоящему важен.

Применение таллия

Таллий оставался «безработным» в течение 60 лет после открытия Крукса. Но к началу 20-х годов нашего столетия были открыты специфические свойства таллиевых препаратов, и сразу же появился спрос на них.
В 1920 г. в Германии был получен патентованный яд против грызунов, в состав которого входил сульфат таллия Tl 2 S0 4 . Это вещество без вкуса и запаха иногда входит в состав инсектицидов и зооцндов и в наши дни.
В том же 1920 г. в журнале «Physical Review» появилась статья Кейса, который обнаружил, что электропроводность одного из соединений таллия (его оксисульфида) изменяется под действием света. Вскоре были изготовлены первые фотоэлементы, рабочим телом которых было именно это вещество. Особо чувствительными они оказались к инфракрасным лучам.
Другие соединения элемента № 81, в частности смешанные кристаллы бромида и иодида одновалентного таллия, хороша пропускают инфракрасные лучи. Такие кристаллы впервые получили в годы второй мировой войны. Их выращивали в платиновых тиглях при 470° С и использовали в приборах инфракрасной сигнализации, а также для обнаружения снайперов противника. Позже ТlВг и TlI применяли в сцинтилляционных счетчиках для регистрации альфа- и бета-излучения...


Общеизвестно, что загар на нашей коже появляется главным образом благодаря ультрафиолетовым лучам и что эти лучи обладают к тому же бактерицидным действием. Однако, как установлено, не все лучи ультрафиолетовой части спектра одинаково эффективны. Медики выделяют излучения эритемального, или эритемного (от латинского, aeritema - «покраснение»), действия - подлинные «лучи загара». И, конечно, материалы, способные преобразовывать первичное ультрафиолетовое излучение в лучи эритемального действия, очень важны для физиотерапии. Такими материалами оказались некоторые силикаты и фосфаты щелочноземельных металлов, активированные талием.
Медицина использует и другие соединения элемента № 81. Их применяют, в частности, для удаления волос при стригущем лишае - соли таллия в соответствующих дозах приводят к временному облысению. Широкому применению солей таллия в медицине препятствует то обстоятельство, что разница между терапевтическими и токсичными дозами этих солей невелика. Токсичность же таллия и его солей требует, чтобы с ними обращались внимательно и осторожно.
До сих пор, рассказывая о практической пользе таллия, мы касались лишь его соединений. Можно добавить, что карбонат таллия Тl 2 С0 3 используют для получения стекла с большим коэффициентом преломления световых лучей, д что же сам таллий? Его тоже применяют, хотя, может быть, не так широко, как соли. Металлический таллий входит в состав некоторых сплавов, придавая им кислотостойкость, прочность, износоустойчивость. Чаще всего таллии вводят в сплавы на основе родственного ему свинца. Подшипниковый сплав - 72% РЬ, 15%Sb, 5% Sn и 8% Тl превосхбдит лучшие оловянные подшипниковые сплавы. Сплав 70% РЬ, 20% Sn и 10% Т1 устойчив к действию азотной и соляной кислот.
Несколько особняком стоит его сплав с ртутью - амальгама таллия, содержащая примерно 8,5% элемента № 81. В обычных условиях она жидкая и, в отличие от чистой ртути, остается в жидком состоянии при температуре до -60° С. Сплав используют в жидкостных затворах, переключателях, термометрах, работающих в условиях Крайнего Севера, в опытах с низкими температурами.
В химической промышленности металлический таллий, как и некоторые его соединения, используют в качестве катализатора, в частности при восстановлении нитробензола водородом.
Не остались без работы и радиоизотопы таллия. Таллий-204 (период полураспада 3,56 года) - чистый бета- излучатель. Его используют в контрольно-измерительной аппаратуре, предназначенной для измерения толщины покрытий и тонкостенных изделий. Подобными установками с радиоактивным таллием снимают заряды статического электричества с готовой продукции в бумажной и текстильной промышленности.
Думаем, что уже приведенных примеров вполне достаточно, чтобы считать безусловно доказанной полезность элемента № 81. А о том, что таллий сделает эпоху в химии, мы не говорили - это все Дюма. Не Александр Дюма, правда (что при его фантазии было бы вполне объяснимо) , а Жан Батист Андрэ Дюма - однофамилец писателя, вполне серьезный химик.
Но, заметим, что и химикам фантазия приносит больше пользы, чем вреда...
ЕЩЕ НЕМНОГО ИСТОРИИ. Французский химик Лами открыл таллий независимо от Крукса. Он обнаружил зеленую спектральную линию, исследуя шламы другого сернокислотного завода. Он же первым получил немного элементарного таллия, установил его металлическую природу и изучил некоторые свойства. Крукс опередил Лами всего на несколько месяцев.

Минералы талия

В некоторых редких минералах - лорандите, врбаите, гутчинсоните, крукезите - содержание элемента № 81 очень велико - от 16 до 80%. Жаль только, что все эти минералы очень редки. Последний минерал таллия, представляющий почти чистую окись трехвалентного таллия ТlОз (79,52% Тl), найден в 1956 г. на территории Узбекскистана. Этот минерал назван авиценнитом - в честь мудреца, врача и философа Авиценны, или правильнее Абу Али ибн Сины.

Таллий в живой природе

Таллий обнаружен в растительных и животных организмах. Он содержится в табаке , корнях цикория , шпинате , древесине бука , в винограде , свекле и других растениях. Из животных больше всего таллия содержат медузы, актинии, морские звезды и другие обитатели морей. Некоторые растения аккумулируют таллий в процессе жизнедеятельности. Таллий был обнаружен в свекле, произраставшей на почве, в которой самыми тонкими аналитическими методами не удавалось обнаружить элемент № 81. Позже было установлено, что даже при минимальной концентрации таллия в почве свекла способна концентрировать и накапливать его.
НЕ ТОЛЬКО ИЗ ДЫМОХОДОВ. Первооткрыватель химического элемента нашел его в летучей пыли сернокислотного завода. Сейчас кажется естественным, что таллий, по существу, нашли в дымоходе - ведь при температуре плавки руд соединения таллия становятся летучими. В пыли, уносимой в дымоход, они конденсируются, как правило, в виде окиси и сульфата. Извлечь таллий из смеси (а, пыль - это смесь многих веществ) помогает хорошая растворимость большинства соединений одновалентного таллия. Их извлекают из пыли подкисленной горячей водой. Повышенная растворимость помогает успешно очищать таллий от многочисленных примесей. После этого получают металлический таллий. Способ получения металлического таллия зависит от того, какое его соединение было конечным продуктом предыдущей производственной стадии. Если был получен карбонат, сульфат или перхлорат таллия, то из них элемент № 81 извлекают электролизом; если же был получен хлорид или оксалат, то прибегают к обычному восстановлению. Наиболее технологичен растворимый в воде сульфат таллия Tl 2 S0 4 . Он сам служит электролитом, при электролизе которого на катодах из алюминия оседает губчатый таллий. Эту губку затем прессуют, плавят и отливают в форму. Следует помнить, что таллий всегда получают попутно: попутно со свинцом, и некоторыми другими элементами. Таков удел рассеянных...

Самый легкий изотоп талия

У элемента № 81 два стабильных и 19 радиоактивных изотопов (с массовыми числами от 189 до 210). Последним в 1972 г. в Лаборатории ядерных проблем Объединенного института ядерных исследований в Дубне получен самый легкий изотоп этого элемента - таллий-189. Его получили, облучая мишень из дифторида свинца ускоренными протонами с энергией 660 Мэв с последующим разделением продуктов ядерных реакций на масс-сепараторе. Период полураспада самого легкого изотопа таллия оказался примерно таким же, как у самого тяжелого, он равен 1,4±0,4 минуты (у 210 Тl -1,32 минуты).

Общие сведения и методы получения

Таллий (Т1)-рассеянный элемент, металл. Открыт в 1861 г. англий­ским ученым У. Круксом при спектроскопическом исследовании шла-мов сернокислотного производства. Название получил благодаря ха­рактерной зеленой линии спектра от латинского thallus - зеленый побег. Первым выделил новый элемент, а также установил его металли­ческий характер и основные свойства К. О. Лями в 1862 г.

Собственные минералы таллия практического значения не имеют. К ним относятся: лорандит TIAsS 2 (58,7-59,7 % Т1); врбаит Ti(As, Sb) 3 S 5 (29,2-32 % Т1); гутчинсонит P(Cu, Al, Tl) 2 AsS 8 (-25% Ti); крукезит (Ti, Cu, Ag) 2 Se (16-19% Ti); авицениит 7T1 2 0 3 -Fe 2 0 3 (-80 % TI).

Исходное сырье для производства таллия - отходы и полупродук­ты свинцово-цинкового, медеплавильного и сернокислотного производ­ства, а татсже медно-кадмиевые кекн, получаемые при гидрометаллурги­ческой переработке цинковых огарков. Содержание таллия в этом слу­чае колеблется от сотых до десятых долей процента, поэтому вначале получают концентрат таллия. Его выделяют из растворов, образующих­ся при непосредственном выщелачивании указанных выше продуктов водой или кислотами, или проводят пирометаллургическое обогаще­ние, основанное на летучести соединений Т! 2 0 и Т1С1. Продукты пиро-металлургического обогащения выщелачивают водой или серной кис­лотой, а из растворов осаждают таллиевый концентрат в виде хлорида, нодида, сульфида, хромата, бихромата или гидроксида таллия (в за­висимости от принятой технологии производства).

Другой довольно распространенный способ - цементация цинковой пылью; при этом получают губку, обогащенную таллием, которую за­тем растворяют в серной кислоте, а из раствора осаждают богатый таллием концентрат. Еще более полно таллий цементируется амальга-мой цинка.

В последнее время возросло значение экстракционных, сорбциоииых и ионообменных способов извлечения н концентрирования таллия.

Дальнейшая очистка концентратов таллня основана на неодинако­вой растворимости соединений таллия и сопутствующих ему металлов, а также различии других физико-химических свойств разделяемых элементов. Таллий выделяется в виде губки цементацией > на цинковых листах из слабокислых очищенных растворов. Нагревание н перемеши­вание ускоряют этот процесс. Цементировать можно не только из раст­вора, но и из суспензии Т1С1 в воде или в 1 %-ной H 2 S0 4 .

Таллиевую губку для получения компактного металла промывают, прессуют и переплавляют при 350 °С под слоем щелочи, канифолн или масла. Плавка под слоем щелочи позволяет одновременно очищать металл, так как ряд примесей (цинк, свинец, хром и др.) переходят в щелочной шлак. Более эффективно щелочное рафинирование идет в присутствии окислителей (KN0 3 ; NaN0 3). Таким образом получают металл, содержащий 5 -10- 2 -10~ 3 % примесей.

Физические свойства

Атомные характеристики. Атомный номер таллия 81, атомная масса 204,37 а. е. м. Атомный объем 17,24х Х10~ 6 м 3 /моль, атомный радиус 0,171 нм, нонные радиусы Т1+ н Т1 3+ соответственно 0,149 и 0,105. Таллий состоит из двух стабильных изотопов 203 Т1(29,5 %) и 205 Т1 (70,5 %); имеет естественные радиоактивные изотопы 206 Т1, 207 Т|, 208 Т1, 21 °Т! с периодами полураспада 4,19; 4,79; 3,1; 1,32 мии соответственно. Получено 11 искусст­венных изотопов таллия, из которых наиболее важный 204 Т1 с периодом полураспада 3,56 года. Потенциалы ионизации атома / (эВ); 6,106; 20,42; 29,8.

Электронная конфигурация внеш­ней электронной оболочки атома 6 s 2 6 p . Электроотрицательность 1,8. Работа выхода электронов <р = 3,7эВ.

Прн атмосферном давлении и тем­пературе ниже 233 °С таллий имеет гексагональную плотноупакованную решетку (г. п. у.) с периодами а = = 0,34496 нм, с-0,55137 нм (при 18°С); выше 233°С кристаллическая

решетка становится объемноцентрированной кубической (о. ц. к.), а = =0,3871 нм (при 250 °С). Энергия кристаллической решетки таллия 182,8 мкДж/кмоль. При высоких давлениях образуется третья модифи­кация у, имеющая г. ц. к. решетку.

Тройная точка, отвечающая равновесию фаз а, В и у, лежит при тем­пературе 115 °С и давлении 3,9 ГПа. Эффективное поперечное сечение захвата тепловых нейтронов 3,4- Ю -28 м 2 .

Технологические свойства

Таллий - мягкий ковкий металл, его можно подвергать холодной про­катке на фольгу и прессованию на проволоку, однако при волочении он рвется из-за низкой своей прочности.

Химические свойства

Нормальный электродный потенциал реакции Т1-е^Т1+, фо=-0,335 В. Электрохимический эквивалент таллия равен 0,70601 мг/Кл. От своих аналогов галлня н индия Т1 сильно отличается по химическим свойствам.

В химических соединениях таллнй может проявлять степень окисле­ния + 1 и +3; возможно образование соединений, в состав которых он входит одновременно в двух степенях окисления. Однако соединения, в которых таллий одновалентен, более устойчивы по сравнению с трех­валентными, поэтому он имеет большое сходство со щелочными метал­лами, образуя аналогичные соединения, в частности хорошо раствори­мые в воде гидроксиды, растворимые нитраты, корбонаты; аналогично щелочным металлам таллий (при степени окисления +1) входит в сос­тав квасцов, шенитов, образует полисульфнды, полииоднды. Многие со­единения одновалентного таллия, как н щелочных металлов, изоморфны.

В то же время подобно Ag, Си, Аи, Hg, одновалентный таллий дает малорастворнмые в воде галогениды, сульфиды и др.; при этом галоге-ниды таллия подобно галогенидам серебра светочувствительны.

Для окисления одновалентных соединений таллия до трехвалентных используют очень сильные окислители: царскую водку, перманганат ка­лия, хлор, бром н др. Соединения трехвалентного таллня легко восста­навливаются в кислых растворах сероводородом, сульфатами и другими восстановителями,

На воздухе металлический таллий быстро темнеет и покрывается черной пленкой оксида Т1 2 0, которая замедляет процесс дальнейшего окисления.

Таллий хорошо растворяется в азотной, серной, хлорной кислотах с образованием солей. В соляной кислоте таллий растворяется с трудом, так как образуется пленка малорастворимого хлорида таллия. С щело­чами металлический таллий ие вступает в реакцию. Вода, не содержа­щая растворенного кислорода, на него ие действует; в присутствии кис­лорода таллий постепенно растворяется в воде с образованием гидрок­сида (ТЮН).

С водородом таллий реагирует только при определенных условиях (в дуге постоянного тока между Си - анодом и Т1 - катодом при давлении водорода, равном ~0,4 МПа) с образованием нестойкого гидрида Т!Н.

Таллий легко вступает в реакцию с галогенами.

Хлорид Т1С1 - белый кристаллический порошок, имеет о.ц.к. решетку или г. ц. к. решетку типа NaCl , температура плавления 450 °С, плотность 7,000 Мг/м 3 .

Бромид TIBr - светло-желтый порошок с о. ц. к. или г. ц. к. решет­кой, плотность 7,500 Мг/м 3 , температура плавления 460 °С.

Иодид ТП - ярко-желтый кристаллический порошок, ниже 174 °С имеет ромбическую решетку и плотность 7,290 Мг/м 3 , а выше этой тем­пературы- о.ц.к. решетку и плотность 7,450 Мг/м 3 , температура плав­ления ТП равна 440 °С.

Фторнд T 1 F - бесцветные кристаллы, плотность 8,360 Мг/м 3 , темпе­ратура плавления 327 °С, в отличие от других галогенидов хорошо раст­ворим в воде.

Легко взаимодействуя с кислородом, таллий образует два оксида: Т1 2 0 и Т1 2 0 3 . При температурах выше 100 °С Т1 2 0 3 заметно диссоцииру­ет Т1 2 0 3 -* Т1 2 0+0 2 .

Оксид (I) Т1 2 0 - черный гигроскопичный порошок, плотность 10,400 Мг/м 3 , температура плавления 580 "С, температура кипения ~1100°С. Оксид (III) Т1 2 0 3 - темно-коричневый кристаллический по­рошок с кубической о.ц.к. решеткой, плотность 10,200 Мг/м 3 , темпера­тура плавления 770 "С, но уже при 500 °С диссоциирует до закиси.

Гидроксид ТЮН - желтое кристаллическое вещество, плотность 7,440 Мг/м 3 . Плавится инконгруэнтно при 125 "С. Хорошо растворяется в воде и проявляет сильные щелочные свойства.

При нагревании таллий реагирует с серой и фосфором, образуя Tl 2 S и Т1 3 Р.

В твердом таллии значительной растворимостью обладают металлы In , Cd , Sn , Hg , Pb , Sb , Bi , Li , Na , Mg , Са, в жидком - ограниченной растворимостью Al , Ga , Cu , Zn . Переходные тугоплавкие металлы IV, V и VI групп вообще ие растворяются в жидком таллии.

Области применения

Примерно 75 % таллия используется в электронике, электротехнике и инфракрасной технике, 7% - в сельском хозяйстве, 3%- в формако-логни, в остальных областях 15 %.

Бромид или иодид таллия применяют в сцннтилляционных счетчиках для В- и у-излученнй как активатор щелочногалогенных кристаллофос-форов.

Монокристаллы твердого раствора бромида и иодида таллия, харак­теризующиеся широкой областью пропускания инфракрасного излучения, применяют для изготовления линз, призм н кювет оптических приборов, работающих в инфракрасной области спектра.

Сульфид и оксисульфид таллия используют для изготовления фото­элементов, чувствительных к воздействию инфракрасного излучения и широко применяемых в авиации.

Карбонат таллия вводят в шихту прн производстве стекла с высоко преломляющей способностью.

Водный раствор смеси таллневых солей, муравьиной и малоновой кислот - жидкость Клеричи используют в минералогических исследова­ниях, так как оиа отличается наиболее высокой плотностью по сравне­нию с другими тяжелыми жидкостями и большой подвижностью.

Соли таллия можно использовать как катализаторы в органическом синтезе, а также как антидетонаторы топлива в двигателях внутреннего сгорания.

Таллий высокой чистоты используют для синтеза полупроводниковых соединений типа TIAsJf 2 (где X - Se , Те, S), необходимых для производ­ства транзисторов, изоляционных покрытий; в газоразрядных лампах мо­нохроматического излучения (зеленый цвет), служащих для градуиров­ки спектральных приборов, контроля пленки, фотонегативов и т. д.

Радиоактивный изотоп 204 Т1 применяют в качестве источника В-из-лучення в приборах для контроля толщины изделий и покрытий.

Ранее таллий широко применяли для приготовления ядов, предназ­наченных для борьбы с грызунами, в настоящее время применение та­ких ядов сократилось.

Введение таллия в подшипниковые сплавы придает нм высокие ан­тифрикционные свойства, а легирование этим элементом свинцовых спла­вов значительно повышает их коррозионную стойкость. Амальгама тал­лия (8,35 °/о) обладает самой низкой из всех известковых двойных спла­вов температурой затвердевания (-59 °С), которую можно еще пони­зить, добавляя индий. Ее применяют в низкотемпературных термометрах и других приборах.

Таллий – греческое имя, переводится как «зеленая ветвь». Почему так назвали химический элемент? Дело в цвете талия при сгорании. Пламя зеленое. Оно-то и помогло открыть металл. Это произошло в 1863-ем году. Английский ученый по фамилии Крукс завладел спектроскопом и отходами сернокислого завода немецкого города Тильперод.

Химик уже сотрудничал с предприятием, извлекая из промышленной пыли селен. Крукс заподозрил, что в ней есть и . Ожидая увидеть в горелке спектроскопа линии этого элемента, ученый заметил травянистую полосу. Такой не было ни у одного из известных металлов. Крукс выделил новое вещество и дал ему имя.

Химические и физические свойства таллия

Таллий – металл голубовато-белого цвета. Элемент мягкий, не имеет вкуса, не пахнет. Это делает вещество особенно опасным, ведь талий ядовит. Коварны и проявления отравления. Симптомы близки к гриппу, бронхопневмонии и другим заболеваниям воспалительного характера.

При этом, исход нередко летальный. К смерти взрослого человека приводит всего 1 грамм таллия . Он впитывается не только в пищеварительном тракте, но и проникает через кожу, вдыхается вместе с воздухом.

Таллий – элемент , на 3-4-е сутки после принятия которого наступает эйфория. Это ложное ощущение здоровья и полноты жизни. Но, потом возвращаются тошнота, рвота, начинается понос, выпадение волос, трескаются углы рта. На этой стадии уже понятно, что имеешь дело не с гриппом, но, бывает уже поздно. Характерные симптомы проявляются через 1-2-е недели после отравления таллием.

Яд быстро окисляется, попадая в атмосферу. Поэтому, транспортируют элемент лишь в герметичных контейнерах. Содержание токсичного металла в воздухе не должно превышать 0,004 мг/м3. Для воды опасен показатель уже в 0,0001 мг/м3. В природе указанные уровни, как правило, не превышаются.

Таллий – редкий и рассеянный элемент. Повышенная концентрация наблюдается лишь в силезских и еще нескольких минералах. Силезия – область Германии. Но, таллий в ее недрах обнаружил в 1896-ом году русский химик и геолог Антипов.

Свойство таллия окисляться проявляется ярче при высоких температурах. Так, при 100-та градусах Цельсия металл покроется пленкой моментально. Поднимись температура еще втрое, вещество расплавится. Закипает таллий при 1460-ти градусах. Есть элементы, реакция с которыми проходит уже при комнатной температуре. В ней можно получить хлорид таллия , а так же, связать его с бромом и йодом.

В химических соединениях таллий бывает либо одна-, либо двухвалентный. Валентность – способность соединяться с атомами других веществ. Соответственно, 81-ый металл периодической системы образует связи по одному или трем направлениям.

Применение таллия

Отравление таллием может быть полезно для человека, если яд получили грызуны. Патентованный препарат для них изобрели в Германии в первой трети 20-го века. В отраву вошел сульфат таллия . Для зооцидов металл пригождается и в современности. Правда, в 20-ом веке препараты на основе 81-го элемента были повсеместны, а сейчас занимают не более 3% рынка.

Таллий, химические свойства металла, пригодились и в производстве фотоэлементов. В них помещают оксисульфид 81-го постояльца . Вещество меняет электропроводность под действием света.

Об этом свойстве оксисульфида таллия впервые написали в журнале Physical Review в 1920-ом году. Сделанные через 5 лет фотоэлементы оказались особо чувствительны к лучам инфракрасного спектра.

Хорошо пропускают инфракрасный свет бромиды и йодиды редкого металла. Поэтому, во времена Второй Мировой таллий купить захотели военные. Смешанные кристаллы взращивали в платиновых тиглях, чтобы потом поместить в инфракрасные сигнализации. Соединения таллия пригождались и при вычислении вражеских снайперов.

Таллий, электронная формула которого KLMN5 s 2 5p 6 5d 10 6s 2 6p 1 E ион (Me=>Me + +e)=6,12эВ, имеет отношение и к загару. Он является реакцией кожи на ультрафиолетовое излучение, начинается активная выработка меланина – природного пегмента-красителя.

Однако, медикам известно, что не все лучи ультрафиолета «рождают» . Эффективны лишь эритимальные. Остальные лучи можно перевести в них. С задачей справляются силикаты и фосфаты некоторых металлов щелочноземельной группы. Для максимального действия элементы активируются таллием.

Цена таллия известна не только физиотерапевтам, но и врачам общей практики, трихологам. Металл входит в смеси для удаления волос. Процедура бывает необходима при поражении стригущим лишаем. К облысению приводят соли таллия . Главное, подобрать терапевтическую дозу. Чуть переборщишь, получишь токсичный, а не лечебный эффект.

Гидроксид таллия и карбонат – добавки в с повышенным светопреломлением, а чистый металл пригождается в металлургии. 81-ый элемент добавляют в некоторые сплавы, чтобы сделать их устойчивыми к кислотам, более прочными и износостойкими.

Обычно, таллий становится компаньоном свинцовых смесей. 81-ый металл есть, к примеру, в подшипниковом сплаве. 8% таллия делают его лучше других составов на основе .

Сплавом является и амальгама таллия. Она твердеет лишь при 60-ти градусах Цельсия. Смесь нужна для производства термометров, используется в жидкостных затворах и переключателях. В контрольно-измерительной же аппаратуре пригождаются радиоизотопы таллия . Они служат чистым бето-излучателем.

Добыча таллия

Элемент добывают попутно, при переработке , и медных руд. Получают металл, как когда-то это делал его первооткрыватель, из пылевых отходов производства. В год добыча таллия составляет примерно 10 тонн. Мировые же запасы элемента оцениваются в 17 тысяч тонн. Это 0,7 частей на миллион. То есть, хоть металл и редкий, но залежи его больше золотых.

Наиболее насыщенны таллием земли Европы, Канады и США. Но, в штатах с 1981-го года добыча ядовитого металла запрещена. Основным поставщиком элемента является Казахстан. Его поставщики предлагают рафинированный таллий . Его запасы связаны не только с рудами других металлов, но и с залегающими в земной коре пластами угля. В них сокрыты 630 тысяч тонн 81-го элемента.

Из минералов таллий содержат врбаит, лорандит, крукезит, гутчинсонит. Перечисленные камни встречаются редко. Зато, доля 81-го металла в них велика – от 16-ти до 80-ти процентов. За 90% зашкаливает содержание таллия в авиценните.

Это почти чистая окись трехвалентного металла открыта в 1956-ом году. Залежи камня нашли на территории Узбекской ССР. Ныне, она стала Казахстаном. Вот и объяснение, откуда страна берет сырье, чтобы снабжать таллием почти весь мировой рынок.

Цена таллия

За килограмм таллия просят почти 7 тысяч долларов. С 2003-го года цена выросла в 7 раз. Один Казахстан, хоть и производит много металла, но не может обеспечить им всех желающих. Канадский таллий дороже среднего. Выгодным предложением всегда были поставки из Китая.

Но, в Поднебесной решили устранить налоговые льготы при экспорте редкого элемента. Это способствовало уменьшению закупок. На мировом рынке начал ощущаться дефицит таллия , что и привело к росту цен на него.

Таллий - элемент главной подгруппы третьей группы шестого периода периодической системы химических элементов Д. И. Менделеева, атомный номер 81. Обозначается символом Tl (лат. Thallium ). Относится к группе тяжелых металлов. Простое вещество таллий - мягкий металл белого цвета с голубоватым оттенком.

История и происхождение названия

Таллий был открыт спектральным методом в 1861 году Уильямом Круксом в шламах свинцовых камер сернокислотного завода города Гарц. Чистый металлический таллий был независимо получен Круксом и французским химиком Клодом-Огюстом Лами в 1862 году.

В марте 1861 г. английский ученый Уильям Крукс исследовал пыль, которую улавливали на одном из сернокислотных производств. Крукс полагал, что эта пыль должна содержать селен и теллур – аналоги серы. Селен он нашел, а вот теллура обычными химическими методами обнаружить не смог. Тогда Крукс решил воспользоваться новым для того времени и очень чувствительным методом спектрального анализа. В спектре он неожиданно для себя обнаружил новую линию светло-зеленого цвета, которую нельзя было приписать ни одному из известных элементов. Эта яркая линия была первой «весточкой» нового элемента. Благодаря ей он был обнаружен и благодаря ей назван по-латыни thallus – «распускающаяся ветка». Спектральная линия цвета молодой листвы оказалась «визитной карточкой» таллия.

Нахождение таллия в природе

Больше 30 лет прошло после открытия Крукса, а таллий все еще оставался одним из наименее изученных элементов. Его искали в природе и находили, но, как правило, в минимальных концентрациях. Лишь в 1896 г. русский ученый И.А. Антипов обнаружил повышенное содержание таллия в силезских марказитах.

Таллий - рассеянный элемент. Содержится в обманках и колчеданах цинка, меди и железа, в калийных солях и слюдах. Таллий - тяжелый металл. Известно лишь семь минералов таллия (например, круксит (Cu, Tl, Ag) 2 Se, лорандит TlAsS 2 , врбаит Tl 4 Hg 3 Sb 2 As 8 S 20 , гутчинсонит (Pb, Tl)S Ag 2 S 5As 2 S 5 , авиценнит Tl 2 O 3 и другие), все они крайне редкие. Главная масса таллия связана с сульфидами и прежде всего с дисульфидами железа. В пирите он установлен в 25% проанализированных образцов. Его содержание в дисульфидах железа нередко составляет 0,1 – 0,2%, а иногда достигает 0,5%. В галените содержание таллия колеблется от 0,003 до 0,1% и редко более. Высокие концентрации таллия в дисульфидах и галенитах характерны для низкотемпературных свинцово-цинковых месторождений в известняках. Содержание таллия, достигающее 0,5% отмечается в некоторых сульфосолях. Небольшое количество таллия встречается во многих других сульфидах, например в сфалеритах и халькопиритах некоторых медноколчеданных месторождений. Его содержание колеблется от 25 до 50 г/т.

Но ни одно месторождение минералов таллия на Земле не представляет интереса для промышленности. Получают этот элемент при переработке различных веществ и руд – как побочный продукт.

Наибольшее геохимическое сходство таллий имеет с К, Rb,Cs, а также с Pb, Ag, Cu, Bi. Таллий легко мигрирует в биосфере. Из природных вод он сорбируется углями, глинами, гидроксидами марганца, накапливается при испарении воды (например, в озере Сиваш до 5·10 -8 г/л). Содержится в калиевых минералах (слюде, полевых шпатах), сульфидных рудах: галените, сфалерите, маркезите (до 0,5 %), киновари. Как примесь присутствует в природных оксидах марганца и железа.

Таллий обнаружен в растительных и животных организмах. Он содержится в табаке, корнях цикория, шпинате, древесине бука, в винограде, свекле и других растениях. Из животных больше всего таллия содержат медузы, актинии, морские звезды и другие обитатели морей. Некоторые растения аккумулируют таллий в процессе жизнедеятельности. Таллий был обнаружен в свекле, произраставшей на почве, в которой самыми тонкими аналитическими методами не удавалось обнаружить элемент.

Получение таллия

Технически чистый таллий очищают от других элементов, содержащихся в колошниковой пыли (Ni, Zn, Cd, In, Ge, Pb, As, Se, Te), растворением в теплой разбавленной кислоте с последующим осаждением нерастворимого сульфата свинца и добавлением HCl для осаждения хлорида таллия (TlCl). Дальнейшая очистка достигается электролизом сульфата таллия в разбавленной серной кислоте с использованием проволоки из платины с последующим плавлением выделившегося таллия в атмосфере водорода при 350-400° С.

Первооткрыватель таллия нашел его в летучей пыли сернокислотного завода. Сейчас кажется естественным, что таллий, по существу, нашли в дымоходе – ведь при температуре плавки руд соединения таллия становятся летучими. В пыли, уносимой в дымоход, они конденсируются, как правило, в виде окиси и сульфата. Извлечь таллий из смеси (а, пыль – это смесь многих веществ) помогает хорошая растворимость большинства соединений одновалентного таллия. Их извлекают из пыли подкисленной горячей водой. Повышенная растворимость помогает успешно очищать таллий от многочисленных примесей. После этого получают металлический таллий. Способ получения металлического таллия зависит от того, какое его соединение было конечным продуктом предыдущей производственной стадии. Если был получен карбонат, сульфат или перхлорат таллия, то из них элемент №81 извлекают электролизом; если же был получен хлорид или оксалат, то прибегают к обычному восстановлению. Наиболее технологичен растворимый в воде сульфат таллия Tl 2 SO 4 . Он сам служит электролитом, При электролизе которого на катодах из алюминия оседает губчатый таллий. Эту губку затем прессуют, плавят и отливают в форму. Следует помнить, что таллий всегда получают попутно: попутно со свинцом, цинком, кадмием и некоторыми другими элементами.

Физические и химические свойства таллия

С одной стороны, таллий сходен со щелочными металлами. И в то же время он чем-то похож на серебро, а чем-то на свинец и олово. Судите сами: подобно калию и натрию, таллий обычно проявляет валентность 1+, гидроокись одновалентного таллия TlOH – сильное основание, хорошо растворимое в воде. Как и щелочные металлы, таллий способен образовывать полииодиды, полисульфиды, алкоголяты. Зато слабая растворимость в воде хлорида, бромида и иодида одновалентного таллия роднит этот элемент с серебром. А по внешнему виду, плотности, твердости, температуре плавления – по всему комплексу физических свойств – таллий больше всего напоминает свинец.

И при этом он занимает место в III группе периодической системы, в одной подгруппе с галлием и индием, и свойства элементов этой подгруппы изменяются вполне закономерно.

Помимо валентности 1+, таллий может проявлять и естественную для элемента III группы валентность 34-. Как правило, соли трехвалентного таллия труднее растворить, чем аналогичные соли таллия одновалентного. Последние, кстати, изучены лучше и имеют большее практическое значение.

Но есть соединения, в состав которых входит и тот и другой таллий. Например, способны реагировать между собой галогениды одно- и трехвалентного таллия. И тогда возникают любопытные комплексные соединения, в частности Tl 1+ – . В нем одновалентный таллий выступает в качестве катиона, а трехвалентный входит в состав комплексного аниона.

Таллий - белый металл с голубоватым оттенком. Существует в трёх модификациях.

Низкотемпературная модификация Tl II с гексагональной решеткой, a =0,34566 нм, c =0,55248 нм. Выше 234 °C существует высокотемпературная модификация Tl I, с объёмной центрированной кубической решеткой типа α-Fe, а =0,3882 нм. При 3,67 ГПа и 25 °C - Tl III-модификация с кубической гранецентрированной решеткой, а =0,4778 нм.

Таллий диамагнитен. При температуре 2,39 К он переходит в сверхпроводящее состояние.

Влияние таллия на организм человека

Таллий относится к высокотоксичным ядам, и отравление им нередко заканчивается летальным исходом. Отравления таллием и его соединениями возможны при их получении и практическом использовании. Таллий проникает в организм через органы дыхания, неповрежденную кожу и пищеварительный тракт. Выводится из организма в течение длительного времени. Острые, подострые и хронические отравления имеют сходную клиническую картину, различаясь выраженностью и быстротой возникновения симптомов. В острых случаях через 1-2 суток появляются признаки поражения желудочно-кишечного тракта (тошнота, рвота, боли в животе, понос, запор) и дыхательных путей. Через 2-3 недели наблюдаются выпадение волос, явления авитаминоза (сглаживание слизистой оболочки языка, трещины в углах рта и т. д.). В тяжёлых случаях могут развиться полиневриты, психические расстройства, поражения зрения и др.

Для сульфата таллия летальная доза при пероральном приеме составляет для людей около 1 г. Известны случаи, когда смертельными оказывались дозы в 8 мг/кг, а также в 10-15 мг/кг. Отравление продолжаются несколько недель (2-3) недели, причем через 3-4 суток после приема яда наступает мнимое хорошее самочувствие.

Предельно допустимая концентрация в воде для таллия составляет всего лишь 0,0001 мг/м3 , в атмосферном воздухе - 0,004 мг/м3.

Существенную экологическую опасность таллий представляет также в связи с тем, что при извлечении из герметичного контейнера он быстро окисляется на открытом воздухе.

Применение таллия

В 1920 г. в Германии был получен патентованный яд против грызунов, в состав которого входил сульфат таллия Tl 2 SO 4 . Это вещество без вкуса и запаха иногда входит в состав инсектицидов и зооцидов и в наши дни.

Из него были изготовлены первые фотоэлементы, рабочим телом которых было именно это вещество. Особо чувствительными они оказались к инфракрасным лучам.

Другие соединения этого металла, в частности смешанные кристаллы бромида и йодида одновалентного таллия, хорошо пропускают инфракрасные лучи. Такие кристаллы впервые получили в годы второй мировой войны. Их выращивали в платиновых тиглях при 470°C и использовали в приборах инфракрасной сигнализации, а также для обнаружения снайперов на войне.

Соли таллия применяют, в частности, для удаления волос при стригущем лишае – соли таллия в соответствующих дозах приводят к временному облысению. Широкому применению этого металла в медицине препятствует то обстоятельство, что разница между терапевтическими и токсичными дозами этих солей невелика. Токсичность же таллия и его солей требует, чтобы с ними обращались внимательно и осторожно.

Металлический таллий входит в состав некоторых сплавов, придавая им кислотостойкость, прочность, износоустойчивость. Чаще всего таллий вводят в сплавы на основе родственного ему свинца. Подшипниковый сплав – 72% Pb, 15% Sb, 5% Sn и 8% Tl превосходит лучшие оловянные подшипниковые сплавы. Сплав 70% Pb, 20% Sn и 10% Tl устойчив к действию азотной и соляной кислот.

Несколько особняком стоит сплав таллия с ртутью – амальгама таллия, содержащая примерно 8,5% элемента №81. В обычных условиях она жидкая и, в отличие от чистой ртути, остается в жидком состоянии при температуре до –60°C. Сплав используют в жидкостных затворах, переключателях, термометрах, работающих в условиях Крайнего Севера, в опытах с низкими температурами.

В химической промышленности металлический таллий, как и некоторые его соединения, используют в качестве катализатора, в частности при восстановлении нитробензола водородом.

Не остались без работы и радиоизотопы таллия. Таллий-204 (период полураспада 3,56 года) – чистый бета-излучатель. Таллий-204 используется в качестве источника бета-излучения во многих приборах для контроля и исследования производственных процессов. С помощью таких приборов автоматически измеряется, например, толщина движущейся ткани или бумаги: как только бета-лучи, проходящие через слой материала, начинают ослабевать или усиливаться (а это значит, что толщина материала соответственно увеличилась или уменьшилась), автоматическое устройство дает нужную команду и восстанавливает "статус-кво", т. е. оптимальный технологический режим. Другие приборы с радиоактивным таллием как рукой снимают вредный статический заряд, возникающий в производственных помещениях текстильной, бумажной и кинопленочной промышленности.

Изотопы таллия

У элемента два стабильных и 19 радиоактивных изотопов (с массовыми числами от 189 до 210). Последним в 1972 г. в Лаборатории ядерных проблем Объединенного института ядерных исследований в Дубне получен самый легкий изотоп этого элемента – таллий-189. Его получили, облучая мишень из дифторида свинца ускоренными протонами с энергией 660 МэВ с последующим разделением продуктов ядерных реакций на масс-сепараторе. Период полураспада самого легкого изотопа таллия оказался примерно таким же, как у самого тяжелого, он равен 1,4±0,4 минуты (у 210 Tl – 1,32 минуты).

Запасы и добыча таллия

Мировые ресурсы таллия, связанные с ресурсами цинка, насчитывают около 17 тыс. т; наибольшая их часть сосредоточена в Канаде, Европе и США. Еще 630 тыс. т связаны с мировыми ресурсами угля. Среднее содержание таллия в земной коре оценивается в 0,7 частей на миллион. Мировые запасы и базу запасов таллия, содержащегося в цинковых рудах, Геологическая служба США оценивает соответственно в 380 и 650 т, из которых на США приходится соответственно 32 и 120 т.

Добыча таллия в мире в 2006 г., по оценке, составила 10 т, не изменившись по сравнению с 2005 г. Таллий в качестве побочного продукта извлекается в ряде стран из пыли и отходов, образующихся при переработке медных, цинковых и свинцовых руд. В США этот металл не извлекается с 1981 г., несмотря на его наличие в добываемых или перерабатываемых рудах.

В России и странах СНГ работают около 10 предприятий, добывающих таллий в процессе производства.

Таллий (Tl)

Гарантированное облысение

Таллий – токсичный для организма человека ультрамикроэлемент. Токсичность его обусловлена нарушением ионного баланса главных катионов организма – натрия и калия.

Суточная потребность организма человека точно не определена. Предполагается, что оптимальное суточное поступление таллия – около 2 мкг.

Суточное поступление таллия с питанием незначительное, однако таллий очень хорошо абсорбируется в кишечнике. Так же, как и калий, таллий в организме аккумулируется внутри клеток . Как в норме, так и при интоксикации таллием, этот элемент в основном сконцентрирован в почках (в медуллярном слое), печени, мышцах, органах эндокринной системы, щитовидной железе и в яичках. В основном таллий выводится с калом путем секреции из внутренней среды организма в кишечник. Сопровождается этот процесс конкуренцией калий/таллий. Выделение таллия через почки в целом незначительное, даже на фоне отравления.

Биологическая роль в организме человека . Таллий имеет выраженную токсичность , обусловленную нарушением ионного баланса главных катионов организма – натрия и калия.

Ион таллия склонен образовывать прочные соединения с серосодержащими лигандами и, таким образом, подавлять активность ферментов, содержащих тиогрупы. Таллий нарушает функционирование различных ферментных систем, ингибирует их, препятствуя тем самым синтезу белков .

Поскольку ионные радиусы калия и таллия близки, они имеют схожие свойства и способны замещать друг друга в ферментах . Катион таллия имеет большую по сравнению с калием способность проникать через клеточную мембрану внутрь клетки. При этом скорость проникновения таллия в 100 раз выше, чем у щелочных металлов. Это вызывает резкое смещение равновесия Na/K, что приводит к функциональным нарушениям нервной системы .

Именно тот факт, что таллий является изоморфным «микроаналогом» калия, свидетельствует о том, что токсичность его соединений для человека существенно выше, чем у свинца и ртути.

Синергисты и антагонисты таллия . Антагонистами таллия являются вещества, содержащие серу .
Таллий подавляет усвоение железа и способен вытеснять калий из организма.

Признаки недостаточности таллия : научные данные отсутствуют.

Повышенное содержание таллия . Таллий имеет выраженную токсичность. Летальная доза для человека – 600 мг.
Источниками отравления таллием могут служить бытовые средства: химикаты, предназначенные для борьбы с грызунами, – родентициды (сульфаты таллия).

Риск хронического отравления таллием присутствует у рабочих, занятых на таких производствах, как обжиг пирита, плавление руд (сульфидные руды, богатые калием минералы), сжигание угля, получение полупроводников, цемента, специального стекла с добавками таллия. Попадать в организм таллий может также через загрязненные пищевые продукты или с пылью.

В криминалистике описаны случаи использования солей таллия с целью убийства или самоубийства .

При остром отравлении таллием в первую очередь поражается периферическая нервная система, центральная нервная система, сердце, гладкая мускулатура, печень, почки, кожа и волосы. Таллий вызывает диффузное поражение нейронов центральной нервной системы.

Основные проявления избытка таллия : сильные боли по типу невралгии; гиперестезия в конечностях (примерно с 4–го дня после перорального поступления таллия), позже возможно наступление паралича, бессонница; истерия; расстройства зрения; спутанность сознания, тахикардия (резистентная к терапии обычными средствами); поражения потовых и сальных желез кожи; выпадение волос из–за нарушения синтеза кератина (на 10–13 день после отравления или несколько позже).

Таллий необходим : соединения таллия применяются для удаления волос при стригущем лишае – соли таллия в соответствующих дозах приводят ко временному облысению . Широкому применению солей таллия в медицине препятствует то обстоятельство, что разница между терапевтическими и токсическими дозами этих солей невелика .

Некоторые силикаты и фосфаты щелочноземельных металлов, активированные таллием, применяются в физиотерапии.

Пищевые источники таллия :

Загрузка...
Top