Учебное пособие: Цитология, эмбриология, общая гистология. Наука, изучающая ткани, - гистология Гистологическое изучение тканей млекопитающих животных

Гистоло́гия (от греч. ίστίομ – ткань и греч. Λόγος – знание, слово, наука) – раздел биологии, изучающий строение тканей живых организмов. Обычно это делается рассечением тканей на тонкие слои и с помощью микротома. В отличие от анатомии, гистология изучает строение организма на тканевом уровне. Гистология человека – раздел медицины, изучающий строение тканей человека. Гистопатология – это раздел микроскопического изучения поражённой ткани, является важным инструментом патоморфологии (патологическая анатомия), так как точный диагноз рака и других заболеваний обычно требует гистопатологического исследования образцов. Гистология судебно-медицинская – раздел судебной медицины, изучающий особенности повреждений на тканевом уровне.

Гистология зародилась задолго до изобретения микроскопа. Первые описания тканей встречаются в работах Аристотеля, Галена, Авиценны, Везалия. В 1665 году Р. Гук ввёл понятие клетки и наблюдал в микроскоп клеточное строение некоторых тканей. Гистологические исследования проводили М. Мальпиги, А. Левенгук, Я. Сваммердам, Н. Грю и др. Новый этап развития науки связан с именами К. Вольфа и К. Бэра – основоположников эмбриологии.

В XIX веке гистология была полноправной академической дисциплиной. В середине XIX века А. Кёлликер, Лейдинг и др. создали основы современного учения о тканях. Р. Вирхов положил начало развитию клеточной и тканевой патологии. Открытия в цитологии и создание клеточной теории стимулировали развитие гистологии. Большое влияние на развитие науки оказали труды И. И. Мечникова и Л. Пастера, сформулировавших основные представления об иммунной системе.

Нобелевскую премию 1906 года в физиологии или медицине присудили двум гистологам, Камилло Гольджи и Сантьяго Рамон-и-Кахалю. Они имели взаимно-противоположные воззрения на нервную структуру головного мозга в различных рассмотрениях одинаковых снимков.

В XX веке продолжалось совершенствование методологии, что привело к формированию гистологии в её нынешнем виде. Современная гистология тесно связана с цитологией, эмбриологией, медициной и другими науками. Гистология разрабатывает такие вопросы, как закономерности развития и дифференцировки клеток и тканей, адаптации на клеточном и тканевом уровнях, проблемы регенерации тканей и органов и др. Достижения патологической гистологии широко используются в медицине, позволяя понять механизм развития болезней и предложить способы их лечения.

Методы исследования в гистологии включают приготовление гистологических препаратов с последующим их изучением с помощью светового или электронного микроскопа. Гистологические препараты представляют собой мазки, отпечатки органов, тонкие срезы кусочков органов, возможно, окрашенные специальным красителем, помещенные на предметное стекло микроскопа, заключенные в консервирующую среду и покрытые покровным стеклом.

Гистология ткани

Ткань – это филогенетически сложившаяся система клеток и неклеточных структур, имеющих общность строения, нередко происхождения и специализированная на выполнении конкретных определённых функций. Ткань закладывается в эмбриогенезе из зародышевых листков. Из эктодермы образуется эпителий кожи (эпидермис), эпителий переднего и заднего отдела пищеварительного канала (в том числе эпителий дыхательных путей), эпителий влагалища и мочевыводящих путей, паренхима больших слюнных желез, наружный эпителий роговицы и нервная ткань.

Из мезодермы образуется мезенхима и её производные. Это все разновидности соединительной ткани, в том числе кровь, лимфа, гладкая мышечная ткань, а также скелетная и сердечная мышечная ткань, нефрогенная ткань и мезотелий (серозные оболочки). Из энтодермы – эпителий среднего отдела пищеварительного канала и паренхима пищеварительных желез (печени и поджелудочной железы). Ткани содержат клетки и межклеточное вещество. В начале образуются стволовые клетки – это малодифференцированные клетки, способные делиться (пролиферация), они постепенно дифференцируются, т.е. приобретают черты зрелых клеток, утрачивают способность к делению и становятся дифференцированными и специализированными, т.е. способными выполнять конкретные функции.

Направленность развития (дифференцировки клеток) обусловлена генетически – детерминация. Обеспечивает эту направленность микроокружение, функцию которого выполняет строма органов. Совокупность клеток, которые образуются из одного вида стволовых клеток – дифферон. Ткани образуют органы. В органах выделяют строму, образованную соединительными тканями, и паренхиму. Все ткани регенерируют. Различают физиологическую регенерацию, постоянно протекающую в обычных условиях, и репаративную регенерацию, которая возникает в ответ на раздражение клеток ткани. Механизмы регенерации одинаковые, только репаративная регенерация идёт в несколько раз быстрее. Регенерация лежит в основе выздоровления.

Механизмы регенерации:

Путём деления клеток. Он особенно развит в наиболее ранних тканях: эпителиальной и соединительной, они содержат много стволовых клеток, пролиферация которых обеспечивает регенерацию.

Внутриклеточная регенерация – она присуща всем клеткам, но является ведущим механизмом регенерации у высокоспециализированных клеток. В основе этого механизма лежит усиление внутриклеточных обменных процессов, которые приводят к восстановлению структуры клетки, а при дальнейшем усилении отдельных процессов

происходит гипертрофия и гиперплазия внутриклеточных органелл. которая приводит к компенсаторной гипертрофии клеток, способных выполнять большую функцию.

Происхождение тканей

Развитие зародыша из оплодотворенного яйца происходит у высших животных в результате многократных клеточных делений (дробления); образующиеся при этом клетки постепенно распределяются по своим местам в разных частях будущего зародыша. Первоначально эмбриональные клетки похожи друг на друга, но по мере нарастания их количества они начинают изменяться, приобретая характерные особенности и способность к выполнению тех или иных специфических функций. Этот процесс, называемый дифференцировкой, в конечном итоге приводит к формированию различных тканей. Все ткани любого животного происходят из трех исходных зародышевых листков: 1) наружного слоя, или эктодермы; 2) самого внутреннего слоя, или энтодермы; и 3) среднего слоя, или мезодермы. Так, например, мышцы и кровь – это производные мезодермы, выстилка кишечного тракта развивается из энтодермы, а эктодерма образует покровные ткани и нервную систему.

Ткани развивались в эволюции. Выделяют 4 группы тканей. В основу классификации заложены два принципа: гистогенетические, в основу которых заложено происхождение и морфофункциональная. Согласно этой классификации структура определяется функцией ткани. Первыми возникли эпителиальные или покровные ткани, важнейшие функции – защитная и трофическая. Они отличаются высоким содержанием стволовых клеток и регенерируют за счёт пролиферации и дифференцировки.

Затем появились соединительные ткани или опорно-трофические, ткани внутренней среды. Ведущие функции: трофическая, опорная, защитная и гомеостатическая – поддержание постоянства внутренней среды. Они характеризуются высоким содержанием стволовых клеток и регенерируют за счёт пролиферации и дифференцировки. В этой ткани выделяют самостоятельную подгруппу – кровь и лимфу -жидкие ткани.

Следующие – мышечные (сократительные) ткани. Основное свойство – сократительное - определяет двигательную активность органов и организма. Выделяют гладкую мышечную ткань -умеренная способность к регенерации путём пролиферации и дифференцировки стволовых клеток, и исчерченные (поперечно-полосатые) мышечные ткани. К ним относят сердечную ткань- внутриклеточная регенерация, и скелетную ткань- регенерирует за счёт пролиферации и дифференцировки стволовых клеток. Основным механизмом восстановления является внутриклеточная регенерация.

Затем возникла нервная ткань. Содержит глиальные клетки, они способны пролиферировать. но сами нервные клетки (нейроны) – высоко дифференцированные клетки. Они реагируют на раздражители, образуют нервный импульс и передают этот импульс по отросткам. Нервные клетки обладают внутриклеточной регенерацией. По мере дифференцировки ткани происходит смена ведущего способа регенерации – от клеточного до внутриклеточного.

Основные типы тканей

Гистологи обычно различают у человека и высших животных четыре основных ткани: эпителиальную, мышечную, соединительную (включая кровь) и нервную. В одних тканях клетки имеют примерно одинаковую форму и размеры и так плотно прилегают одна к другой, что между ними не остается или почти на остается межклеточного пространства; такие ткани покрывают наружную поверхность тела и выстилают его внутренние полости. В других тканях (костной, хрящевой) клетки расположены не так плотно и окружены межклеточным веществом (матриксом), которое они продуцируют. От клеток нервной ткани (нейронов), образующих головной и спинной мозг, отходят длинные отростки, заканчивающиеся очень далеко от тела клетки, например в местах контакта с мышечными клетками. Таким образом, каждую ткань можно отличить от других по характеру расположения клеток. Некоторым тканям присуще синцитиальное строение, при котором цитоплазматические отростки одной клетки переходят в аналогичные отростки соседних клеток; такое строение наблюдается в зародышевой мезенхиме, рыхлой соединительной ткани, ретикулярной ткани, а также может возникнуть при некоторых заболеваниях.

Многие органы состоят из тканей нескольких типов, которые можно распознать по характерному микроскопическому строению. Ниже дается описание основных типов тканей, встречающихся у всех позвоночных животных. У беспозвоночных, за исключением губок и кишечнополостных, тоже имеются специализированные ткани, аналогичные эпителиальной, мышечной, соединительной и нервной тканям позвоночных.

Эпителиальная ткань. Эпителий может состоять из очень плоских (чешуйчатых), кубических или же цилиндрических клеток. Иногда он бывает многослойным, т.е. состоящим из нескольких слоев клеток; такой эпителий образует, например, наружный слой кожи у человека. В других частях тела, например в желудочно-кишечном тракте, эпителий однослойный, т.е. все его клетки связаны с подлежащей базальной мембраной. В некоторых случаях однослойный эпителий может казаться многослойным: если длинные оси его клеток расположены непараллельно друг другу, то создается впечатление, что клетки находятся на разных уровнях, хотя на самом деле они лежат на одной и той же базальной мембране. Такой эпителий называют многорядным. Свободный край эпителиальных клеток бывает покрыт ресничками, т.е. тонкими волосовидными выростами протоплазмы (такой ресничный эпителий выстилает, например, трахею), или же заканчивается «щеточной каемкой» (эпителий, выстилающий тонкий кишечник); эта каемка состоит из ультрамикроскопических пальцевидных выростов (т.н. микроворсинок) на поверхности клетки. Помимо защитных функций эпителий служит живой мембраной, через которую происходит всасывание клетками газов и растворенных веществ и их выделение наружу. Кроме того, эпителий образует специализированные структуры, например железы, вырабатывающие необходимые организму вещества. Иногда секреторные клетки рассеяны среди других эпителиальных клеток; примером могут служить бокаловидные клетки, вырабатывающие слизь, в поверхностном слое кожи у рыб или в выстилке кишечника у млекопитающих.

Мышечная ткань. Мышечная ткань отличается от остальных своей способностью к сокращению. Это свойство обусловлено внутренней организацией мышечных клеток, содержащих большое количество субмикроскопических сократительных структур. Существует три типа мышц: скелетные, называемые также поперечнополосатыми или произвольными; гладкие, или непроизвольные; сердечная мышца, являющаяся поперечнополосатой, но непроизвольной. Гладкая мышечная ткань состоит из веретеновидных одноядерных клеток. Поперечнополосатые мышцы образованы из многоядерных вытянутых сократительных единиц с характерной поперечной исчерченностью, т.е. чередованием светлых и темных полос, перпендикулярных длинной оси. Сердечная мышца состоит из одноядерных клеток, соединенных конец в конец, и имеет поперечную исчерченность; при этом сократительные структуры соседних клеток соединены многочисленными анастомозами, образуя непрерывную сеть.

Соединительная ткань. Существуют различные типы соединительной ткани. Самые важные опорные структуры позвоночных состоят из соединительной ткани двух типов – костной и хрящевой. Хрящевые клетки (хондроциты) выделяют вокруг себя плотное упругое основное вещество (матрикс). Костные клетки (остеокласты) окружены основным веществом, содержащим отложения солей, главным образом фосфата кальция. Консистенция каждой из этих тканей определяется обычно характером основного вещества. По мере старения организма содержание минеральных отложений в основном веществе кости возрастает, и она становится более ломкой. У маленьких детей основное вещество кости, а также хряща богато органическими веществами; благодаря этому у них обычно бывают не настоящие переломы костей, а т.н. надломы (переломы по типу «зеленой ветки»). Сухожилия состоят из волокнистой соединительной ткани; ее волокна образованы из коллагена – белка, секретируемого фиброцитами (сухожильными клетками). Жировая ткань бывает расположена в разных частях тела; это своеобразный тип соединительной ткани, состоящий из клеток, в центре которых находится большая глобула жира.

Кровь. Кровь представляет собой совершенно особый тип соединительной ткани; некоторые гистологи даже выделяют ее в самостоятельный тип. Кровь позвоночных состоит из жидкой плазмы и форменных элементов: красных кровяных клеток, или эритроцитов, содержащих гемоглобин; разнообразных белых клеток, или лейкоцитов (нейтрофилов, эозинофилов, базофилов, лимфоцитов и моноцитов), и кровяных пластинок, или тромбоцитов. У млекопитающих зрелые эритроциты, поступающие в кровяное русло, не содержат ядер; у всех других позвоночных (рыб, земноводных, пресмыкающихся и птиц) зрелые функционирующие эритроциты содержат ядро. Лейкоциты делят на две группы – зернистых (гранулоциты) и незернистых (агранулоциты) – в зависимости от наличия или отсутствия в их цитоплазме гранул; кроме того, их нетрудно дифференцировать, используя окрашивание специальной смесью красителей: гранулы эозинофилов приобретают при таком окрашивании ярко-розовый цвет, цитоплазма моноцитов и лимфоцитов – голубоватый оттенок, гранулы базофилов – пурпурный оттенок, гранулы нейтрофилов – слабый лиловый оттенок. В кровяном русле клетки окружены прозрачной жидкостью (плазмой), в которой растворены различные вещества. Кровь доставляет кислород в ткани, удаляет из них диоксид углерода и продукты метаболизма, переносит питательные вещества и продукты секреции, например гормоны, из одних частей организма в другие.

Нервная ткань. Нервная ткань состоит из высоко специализированных клеток – нейронов, сконцентрированных главным образом в сером веществе головного и спинного мозга. Длинный отросток нейрона (аксон) тянется на большие расстояния от того места, где находится тело нервной клетки, содержащее ядро. Аксоны многих нейронов образуют пучки, которые мы называем нервами. От нейронов отходят также дендриты – более короткие отростки, обычно многочисленные и ветвистые. Многие аксоны покрыты специальной миелиновой оболочкой, которая состоит из шванновских клеток, содержащих жироподобный материал. Соседние шванновские клетки разделены небольшими промежутками, называемыми перехватами Ранвье; они образуют характерные углубления на аксоне. Нервная ткань окружена опорной тканью особого типа, известной под названием нейроглии.

Реакции тканей на аномальные условия

При повреждении тканей возможна некоторая утрата типичной для них структуры в качестве реакции на возникшее нарушение.

Механическое повреждение. При механическом повреждении (разрезе или переломе) тканевая реакция направлена на то, чтобы заполнить образовавшийся разрыв и воссоединить края раны. К месту разрыва устремляются слабо дифференцированные элементы тканей, в частности фибробласты. Иногда рана бывает так велика, что хирургу приходится вносить в нее кусочки ткани, чтобы стимулировать начальные стадии процесса заживления; для этого используют обломки или даже целые куски кости, полученные при ампутации и хранящиеся в «банке костей». В тех случаях, когда кожа, окружающая большую рану (например, при ожогах), не может обеспечить заживление, прибегают к пересадкам лоскутов здоровой кожи, взятых с других частей тела. Такие трансплантаты в некоторых случаях не приживляются, поскольку пересаженной ткани не всегда удается образовать контакт с теми частями тела, на которые ее переносят, и она отмирает или отторгается реципиентом.

Давление. Омозолелости возникают при постоянном механическом повреждении кожи в результате оказываемого на нее давления. Они проявляются в виде хорошо знакомых всем мозолей и утолщений кожи на подошвах ног, ладонях рук и на других участках тела, испытывающих постоянное давление. Удаление этих утолщений путем иссечения не помогает. До тех пор, пока давление будет продолжаться, образование омозолелостей не прекратится, а срезая их мы лишь обнажаем чувствительные нижележащие слои, что может привести к образованию ранок и развитию инфекции.



Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство сельского хозяйства и продовольствия Республики Беларусь

УО ”Витебская ордена “Знак Почета”

государственная академия ветеринарной медицины”

Кафедра патологической анатомии и гистологии

ДИПЛОМН АЯ РАБОТА

на тему: «Изучение вопросов цитологии, гистологии и эмбриологии»

Витебск 2011

1. Гистология как наука, её взаимосвязь с другими дисциплинами, роль в формировании и практической работе врача ветеринарной медицины

2. Определение понятия «клетка». Её структурная организация

3. Состав и назначение цитоплазмы

4. Органеллы клеток (определение, классификация, характеристика строения и функций митохондрий, пластинчатого комплекса, лизосом, эндоплазматической сети)

5. Строение и функции ядра

6. Виды клеточного деления

8. Строение сперматозоидов и их биологические свойства

9. Сперматогенез

10. Строение и классификация яйцеклеток

11. Этапы развития зародыша

12. Особенности эмбрионального развития млекопитающих (образование трофобласта и плодных оболочек)

13. Плацента (строение, функции, классификации)

14. Морфологическая классификация и краткая характеристика основных разновидностей эпителия

15. Общая характеристика крови как ткани внутренней среды организма

16. Строение и функциональное значение гранулоцитов

17. Строение и функциональное значение агранулоцитов

18. Морфофункциональная характеристика рыхлой соединительной ткани

19. Общая характеристика нервной ткани (состав, классификация нейроцитов и нейроглии)

20. Строение и функции тимуса

21. Строение и функции лимфатических узлов

22. Строение и функции

23. Строение и функции однокамерного желудка. Характеристика его жилистого аппарата

24. Строение и функции тонкой кишки

25. Строение и функции печени

26. Строение и функции лёгкого

27. Строение и функции почки

28. Строение и функции семенников

29. Строение и функции матки

30. Состав и назначение эндокринной системы

31. Клеточное строение коры полушарий большого мозга

1. Г истология как наука, её взаимосвязь с другими дисциплинами, роль в формировании и практической работе врача ветеринарной медицины

Гистология (histos - ткань, logos - учение, наука) - это наука о микроскопическом строении, развитии и жизнедеятельности клеток, тканей и органов животных и человека. Организм представляет собой единую целостную систему, построенную из множества частей. Эти части тесно взаимосвязаны между собой, а сам организм постоянно взаимодействует с внешней средой. В процессе эволюции организм животных приобрел многоуровневый характер своей организации:

Молекулярный.

Субклеточный.

Клеточный.

Тканевой.

Органный.

Системный.

Организменный.

Это позволяет при изучении строения животных расчленять их организмы на отдельные части, применять различные методы исследования и выделять в гистологии как отдельные отрасли знаний, следующие разделы:

1. Цитологию - изучает строение и функции клеток организма;

2. Эмбриологию - исследует закономерности зародышевого развития организма:

а) Общую эмбриологию - науку о наиболее ранних этапах развития зародыша, включая период возникновения органов, характеризующих принадлежность особей к определенному типу и классу животного царства;

б) Частную эмбриологию - систему знаний о развитии всех органов и тканей зародыша;

3. Общую гистологию - учение о строении и функциональных свойствах тканей организма;

4. Частную гистологию - наиболее обширный и важный раздел дисциплины, включающий всю полноту знаний об особенностях строения и функциональных отправлений органов, формирующих определенные системы организма.

Гистология относится к морфологическим наукам и является одной из фундаментальных биологических дисциплин. Она тесно связана с другими общебиологическими (биохимия, анатомия, генетика, физиология, иммуноморфология, молекулярная биология), дисциплинами животноводческого комплекса, а также ветеринарного профиля (патанатомия, ветсанэкспертиза, акушерство, терапия и др.). Вместе они составляют теоретическую базу для изучения ветеринарной медицины. Гистология имеет и важное практическое значение: многие гистологические методы исследования широко применяются во врачебной практике.

Задачи и значение гистологии.

1. Она вместе с другими науками формирует врачебное мышление.

2. Гистология создает биологические основы для развития ветеринарной медицины и животноводства.

3. Гистологические методы широко применяют в диагностике болезней животных.

4. Гистология обеспечивает контроль качества и эффективности применения кормовых добавок и профилактических средств.

5. С помощью гистологических методов исследования осуществляют контроль терапевтической эффективности ветпрепаратов.

6. Обеспечивает оценку качества селекционной работы с животными и воспроизводства стада.

7. Любое целенаправленное вмешательство в организм животных можно контролировать гистологическими методами.

2. Определение понятия «клетка». Её структурная организация

Клетка - это основная структурная и функциональная единица, которая лежит в основе строения, развития и жизнедеятельности организмов животных и растений. Она состоит из 2-х неразрывно связанных частей: цитоплазмы и ядра. Цитоплазма включает 4 компонента:

Клеточную оболочку (плазмолемма).

Гиалоплазму

Органеллы (органоиды)

Клеточные включения

Ядро также состоит из 4 частей:

Ядерной оболочки, или кариолеммы

Ядерного сока, или кариоплазмы

Хроматина

Плазмолемма - это внешняя оболочка клетки. Построена из биологической мембраны, надмембранного комплекса и подмембранного аппарата. Удерживает клеточное содержимое, защищает клетку и обеспечивает ее взаимодействие с околоклеточной средой, другими клетками и тканевыми элементами.

Гиалоплазма - коллоидная среда цитоплазмы. Служит для размещения органелл, включений, осуществления их взаимодействия.

Органеллы - это постоянные структуры цитоплазмы, выполняющие в ней определенные функции.

Включения - вещества, поступающие в клетку для целей питания или образующиеся в ней в результате процессов жизнедеятельности.

Ядерная оболочка состоит из двух биологических мембран, отграничивает содержимое ядра от цитоплазмы и одновременно обеспечивает их тесное взаимодействие.

Ядерный сок - коллоидная среда ядра.

Хроматин - форма существования хромосом. Состоит из ДНК, гистоновых и негистоновых белков, РНК.

Ядрышко - комплекс ДНК ядрышковых организаторов, рибосомальной РНК, белков и субъединиц рибосом, здесь формирующихся.

3. Состав и назначение цитоплазмы

Цитоплазма - одна из двух главных частей клетки, которая обеспечивает ее основные жизненные процессы.

Цитоплазма включает 4 компонента:

Клеточную оболочку (плазмолемму).

Гиалоплазму.

Органеллы (органоиды).

Клеточные включения.

Гиалоплазма - это коллоидный матрикс цитоплазмы, в котором протекают основные жизненные процессы клетки, размещаются и функционируют органеллы и включения.

Клеточная оболочка (плазмолемма) - построена из биологической мембраны, надмембранного комплекса и подмембранного аппарата. Она удерживает клеточное содержимое, поддерживает форму клеток, осуществляет их двигательные реакции, выполняет барьерную и рецепторную функции, обеспечивает процессы поступления и выведения веществ, а также взаимодействие с околоклеточной средой, другими клетками и тканевыми элементами.

Биологическая мембрана как основа плазмолеммы построена из бимолекулярного липидного слоя, в который мозаично включены белковые молекулы. Гидрофобные полюса липидных молекул обращены внутрь, образуя своеобразный гидравлический замок, а их гидрофильные головки обеспечивают активное взаимодействие с внешней и внутриклеточной средой.

Белки размещаются поверхностно (периферические), входят в гидрофобный слой (полуинтегральные) или пронизывают мембрану насквозь (интегральные). Функционально они формируют структурные, ферментные, рецепторные и транспортные белки.

Надмембранный комплекс - гликокаликс - оболочки образован гликозаминогликанами. Выполняет защитную и регуляторную функции.

Подмембранный аппарат сформирован микротрубочками и микрофиламентами. Выступает в роли опорно-сократительного аппарата.

Органеллы - это постоянные структуры цитоплазмы, выполняющие в ней определенные функции. Различают органеллы общего назначения (аппарат Гольджи, митохондрии, клеточный центр, рибосомы, лизосомы, пероксисомы, цитоплазматическая сеть, микротрубочки и микрофиламенты) и специальные (миофибриллы - в мышечных клетках; нейрофибриллы, синаптические пузырьки и тигроидное вещество - в нейроцитах; тонофибриллы, микроворсинки, реснички и жгутики - в эпителиоцитах).

Включения - вещества, поступающие в клетку для целей питания или образующиеся в ней в результате процессов жизнедеятельности. Различают трофические, секреторные, пигментные и экскреторные включения.

4. Органеллы клеток (определение, классификация, характеристика строения и функций митохондрий, пластинчатого комплекса, лизосом, эндоплазматической сети)

Органеллы (органоиды) - постоянные структуры цитоплазмы, выполняющие в ней определенные функции.

Классификация органелл учитывает особенности их строения и физиологических отправлений.

На основе учета характера выполняемых функций все органоиды подразделяются на две большие группы:

1. Органеллы общего назначения, выражены во всех клетках организма, обеспечивают наиболее общие функции, поддерживающие их структуру и жизненные процессы (митохондрии, центросома, рибосомы, лизосомы, пероксисомы, микротрубочки, цитоплазматическая сеть, комплекс Гольджи)

2. Специальные - встречаются лишь в клетках, которые выполняют специфические функции (миофибриллы, тонофибриллы, нейрофибриллы, синаптические пузырьки, тигроидное вещество, микроворсинки, реснички, жгутики).

По структурному признаку различаем органоиды мембранного и немембранного строения.

Органеллы мембранного строения в своей основе имеют выраженными одну или две биологические мембраны (митохондрии, пластинчатый комплекс, лизосомы, пероксисомы, эндоплазмамическая сеть).

Органеллы немембранного строения формируются микротрубочками, глобулами из комплекса молекул и их пучками (центросома, микротрубочки, микрофиламенты и рибосомы).

По величине выделяем группу органелл, видимых в световой микроскоп (аппарат Гольджи, митохондрии, клеточный центр), и ультрамикроскопических органелл, видимых только в электронный микроскоп (лизосомы, пероксисомы, рибосомы, эндоплазматическая сеть, микротрубочки и микрофиламенты).

Комплекс Гольджи (пластинчатый комплекс) при световой микроскопии виден в виде коротких и длинных нитей (до 15 мкм длиной). При электронной микроскопии каждая такая нить (диктиосома) представляет комплекс плоских цистерн, наслоенных друг на друга, трубочек и пузырьков. Пластинчатый комплекс обеспечивает накопление и выведение секретов, синтезирует некоторые липиды и углеводы, формирует первичные лизосомы.

Митохондрии при световой микроскопии обнаруживаются в цитоплазме клеток в виде мелких зерен и коротких нитей (длиной до 10 мкм), от наименований которых образовано само название органоида. При электронной микроскопии каждая из них представляется в форме телец округлой или продолговатой формы, состоящих из двух мембран и матрикса. Внутренняя мембрана имеет гребневидные выпячивания - кристы. В матриксе выявляются митохондриальные ДНК и рибосомы, синтезирующие некоторые структурные белки. Ферменты, локализованные на мембранах митохондрий, обеспечивают процессы окисления органических веществ (клеточное дыхание) и запасание АТФ (энергетическая функция).

Лизосомы представлены мелкими пузырьковидными образованиями, стенка которых сформирована биологической мембраной, внутри которой заключен широкий набор гидролитических ферментов (около 70).

Выполняют роль пищеварительной системы клеток, нейтрализуют вредные агенты и чужеродные частицы, осуществляют утилизацию собственных устаревших и поврежденных структур.

Различают первичные лизосомы, вторичные (фаголизосомы, аутофаголизосомы) и третичные телолизосомы (остаточные тельца).

Эндоплазматическая сеть - это система мельчайших цистерн и канальцев, анастомозирующих между собой и пронизывающих цитоплазму. Их стенки образованы одиночными мембранами, на которых упорядоченно располагаются ферменты для синтеза липидов и углеводов - гладкая эндоплазматическая сеть (агранулярная) или фиксируются рибосомы - шероховатая (гранулярная) сеть. Последняя предназначена для ускоренного синтеза белковых молекул на общие нужды организма (на экспорт). Обе разновидности ЭПС обеспечивают также циркуляцию и транспорт различных веществ.

ветеринария гистология клетка организм

5. Строение и функции ядра

Ядро клетки является ее второй важнейшей составляющей частью.

У большинства клеток выражено одно ядро, однако часть клеток печени и кардиомиоцитов имеют 2 ядра. В макрофагах костной ткани их насчитывается от 3 до нескольких десятков, а в поперечно-полосатом мышечном волокне обнаруживается от 100 до 3-х тысяч ядер. Наоборот, эритроциты млекопитающих являются безъядерными.

Форма ядра чаще округлая, но в призматических клетках эпителия овальная, в плоских клетках оно уплощенное, у зрелых зернистых лейкоцитов сегментированное, у гладких миоцитов удлиняется до палочковидного. Располагается ядро, как правило, в центре клетки. У плазмоцитов лежит эксцентрично, а в призматических эпителиоцитах смещается к базальному полюсу.

Химический состав ядра:

Белки - 70 %, нуклеиновые кислоты - 25 %, углеводы, липиды и неорганические вещества составляют примерно 5%.

Структурно ядро построено из:

1. ядерной оболочки (кариолеммма),

2. ядерного сока (кариоплазма),

3. ядрышка,

4. хроматина.Ядерная оболочка - кариолемма состоит из 2-х элементарных биологических мембран. Между ними выражено перинуклеарное пространство. В отдельных участках две мембраны соединяются между собой и формируют поры кариолеммы, диаметром до 90 нм. В них имеются структуры, образующие так называемый поровый комплекс из трех пластинок. По краям каждой пластинки лежит 8 гранул, а в их центре - одна. К ней от периферических гранул идут тончайшие фибриллы (нити). В результате формируются своеобразные диафрагмы для регуляции перемещения через оболочку органических молекул и их комплексов.

Функции кариолеммы:

1. разграничительная,

2. регуляторная.

Ядерный сок (кариоплазма) - это коллоидный раствор углеводов, белков, нуклеотидов и минеральных веществ. Представляет собой микросреду для обеспечения реакций обмена веществ и перемещения информационных и транспортных РНК к ядерным порам.

Хроматин - это форма существования хромосом. Представлен комплексом молекул ДНК, РНК, белков-упаковщиков и ферментов (гистоны и негистоновые белки). Гистоны непосредственно связаны с хромосомой. Они обеспечивают спирализацию молекулы ДНК в хромосоме. Негистоновые белки - это ферменты: ДНК - нуклеазы, разрушающие комплементарные связи, вызывающие ее деспирализацию;

ДНК и РНК - полимеразы, обеспечивающих построение молекул РНК на расшитой ДНК, а также самоудвоение хромосом перед делением.

Хроматин представлен в ядре в двух формах:

1. диспергированный эухроматин, который выражен в виде мелкой зернистости и нитей. В этом случае участки молекул ДНК находятся в раскрученном состоянии. На них легко синтезируются молекулы РНК, считывающие информацию о строении белка, строятся транспортные РНК. Образовавшаяся и - РНК перемещается в цитоплазму и внедряется в рибосомы, где осуществляются процессы синтеза белка. Эухроматин представляет функционально активную форму хроматина. Его преобладание свидетельствует о высоком уровне процессов жизнедеятельности клетки.

2. Конденсированный гетерохроматин. При световой микроскопии выглядит в виде крупных гранул и глыбок. При этом белки-гистоны плотно спирализуют и упаковывают молекулы ДНК, на которых поэтому невозможно построить и - РНК, отчего гетерохроматин представляет функционально неактивную, невостребованную часть хромосомного набора.

Ядрышко. Имеет округлую форму, диаметром до 5 мкм. В клетках может быть выражено от 1 до 3 ядрышек, в зависимости от ее функционального состояния. Представляет совокупность концевых участков нескольких хромосом, которые называются ядрышковыми организаторами. На ДНК ядрышковых организаторов образуются рибосомальные РНК, которые, объединяясь с соответствующими белками, формируют субъединицы рибосом.

Функции ядра:

1. Сохранение в неизмененном виде полученной от материнской клетки наследственной информации.

2. Координация процессов жизнедеятельности и реализация наследственной информации посредством синтеза структурных и регуляторных белков.

3. Передача наследственной информации дочерним клеткам при делении.

6. Виды клеточного деления

Деление представляет способ самовоспроизведения клеток. Оно обеспечивает:

а) непрерывность существования клеток определенного типа;

б) тканевой гомеостаз;

в)физиологическую и репаративную регенерацию тканей и органов;

г) размножение особей и сохранение видов животных.

Существует 3 способа деления клеток:

1. амитоз - деление клетки без видимых изменений хромосомного аппарата. Оно происходит путем простой перетяжки ядра и цитоплазмы. Хромосомы не выявляются, веретено деления не образуется. Свойственен некоторым эмбриональным и поврежденным тканям.

2. митоз - способ деления соматических и половых клеток на стадии размножения. При этом из одной материнской клетки образуются две дочерние с полным, или диплоидным, набором хромосом.

3. мейоз - это способ деления половых клеток на стадии созревания, при котором из одной материнской клетки образуются 4 дочерние с половинным, гаплоидным, набором хромосом.

7. М итоз

Митозу предшествует интерфаза, в течение которой клетка готовится к будущему делению. Эта подготовка включает

Рост клетки;

Накопление энергии в виде АТФ и питательных веществ;

Самоудвоение молекул ДНК и хромосомного набора. В результате удвоения каждая хромосома состоит из 2-х сестринских хроматид;

Удвоение центриолей клеточного центра;

Синтез специальных белков типа тубулина для построения нитей веретена деления.

Собственно митоз слагается из 4 фаз:

Профазы,

Метафазы,

Анафазы,

Телофазы.

В профазе хромосомы спирализуются, уплотняются и укорачиваются. Они теперь видны при световой микроскопии. Центриоли клеточного центра начинают расходиться к полюсам. Между ними строится веретено деления. В конце профазы исчезает ядрышко и происходит фрагментация ядерной оболочки.

В метафазе завершается построение веретена деления. Короткие нити веретена прикрепляются к центромерам хромосом. Все хромосомы располагаются на экваторе клетки. Каждая из них удерживается в экваториальной пластинке с помощью 2-х, хроматиновых нитей, которые идут к полюсам клетки, а ее центральная зона заполнена длинными ахроматиновыми фибриллами.

В анафазе за счет сокращения хроматиновых нитей веретена деления хроматиды отрываются друг от друга в области центромеров, после чего каждая из них скользит по центральным нитям к верхнему или нижнему полюсу клетки. С этого момента хроматида называется хромосомой. Таким образом на полюсах клетки оказывается равное количество идентичных хромосом, т.е. по одному полному, диплоидному, их набору.

В телофазе вокруг каждой группы хромосом образуется новая ядерная оболочка. Конденсированный хроматин начинает разрыхляться. Появляются ядрышки. В центральной части клетки плазмолемма впячивается внутрь, с ней соединяются канальцы эндоплазматической сети, что приводит к цитотомии и разделению материнской клетки на две дочерние.

Мейоз (редукционное деление).

Ему также предшествует интерфаза, в которой выделяют те же процессы, что и перед митозом. Сам мейоз включает два деления: редукционное, при котором образуются гаплоидные клетки с удвоенными хромосомами, и эквационное, приводящее митотическим путем к образованию клеток с одиночными хромосомами.

Ведущим явлением, обеспечивающим уменьшение хромосомного набора, является конъюгация отцовских и материнских хромосом в каждой паре, которая проходит в профазе первого деления. При сближении гомологичных хромосом, состоящих из двух хроматид, образуются тетрады, включающие уже 4 хроматиды.

В метафазе мейоза тетрады сохраняются и располагаются на экваторе клетки. В анафазе поэтому к полюсам отходят целые удвоенные хромосомы. В результате и образуются две дочерние клетки с половинным набором удвоенных хромосом. Такие клетки после очень короткой интерфазы делятся снова уже обычным митозом, что приводит к появлению гаплоидных клеток с одиночными хромосомами.

Явление конъюгации гомологичных хромосом попутно решает и другую важную задачу - создание предпосылок для индивидуальной генетической изменчивости за счет процессов кроссинговера и обмена генами и многовариантности в полярной ориентации тетрад в метафазе первого деления.

8. Строение сперматозоидов и их биологические свойства

Сперматозоиды (половые клетки самцов) - это жгутиковые клетки бичевидной формы. Последовательное расположение органелл в сперматозоиде позволяет выделить в клетке головку, шейку, тело и хвостик.

Головка сперматозоида представителей сельскохозяйственных млекопитающих ассиметричная - ковшеобразная, что обеспечивает его прямолинейное, поступательно-вращательное движение. Большая часть головки занята ядром, а самая передняя образует головной чехлик с акросомой. В акросоме (видоизмененный комплекс Гольджи) накапливаются ферменты (гиалуронидаза, протеазы), которые позволяют сперматозоидам разрушать вторичные оболочки яйцеклетки при оплодотворении.

Позади ядра, в шейке клетки, расположены одна за другой две центриоли - проксимальная и дистальная. Проксимальная центриоль лежит в цитоплазме свободно и при оплодотворении вносится в яйцеклетку. Из дистальной центриоли вырастает осевая нить - это специальная органелла клетки, которая обеспечивает биение хвостика только в одной плоскости.

В теле сперматозоида вокруг осевой нити последовательно друг за другом располагаются митохондрии, формирующие спиральную нить - энергетический центр клетки.

В области хвостика цитоплазма постепенно убывает, так что в его конечной части осевая нить одета только плазмолеммой.

Биологические свойства сперматозоидов:

1. Носительство наследственной информации об отцовском организме.

2. Сперматозоиды не способны к делению, их ядро содержит половинный (гаплоидный) набор хромосом.

3. Величина клеток не коррелирует с массой животных и поэтому у представителей сельскохозяйственных млекопитающих колеблется в узких пределах (от 35 до 63 мкм).

4. Скорость движения составляет 2-5 мм в минуту.

5. Сперматозоидам свойственно явление реотаксиса, т.е. движение против слабого тока слизи в половых путях самки, а также явление хемотаксиса - перемещение сперматозоидов на химические вещества (гиногамоны), вырабатываемые яйцеклеткой.

6. В придатке семенников сперматозоиды приобретают дополнительную липопротеиновую оболочку, которая позволяет им скрывать свои антигены, т.к. для организма самки гаметы самца выступают в роли чужеродных клеток.

7. Сперматозоиды обладают отрицательным зарядом, что дает им возможность отталкиваться друг от друга и предотвращать тем самым склеивание и механическое повреждение клеток (в одном эякуляте насчитывается до нескольких млрд. клеток).

8. Сперматозоиды животных с внутренним оплодотворением не выносят воздействия факторов внешней среды, в которой они погибают практически сразу.

9. Губительный эффект на сперматозоидов оказывают высокая температура, ультрафиолетовое облучение, кислая среда, соли тяжелых металлов.

10. Неблагоприятное влияние проявляется при воздействии радиационного излучения, алкоголя, никотина, наркотических веществ, антибиотиков и ряда других лекарственных препаратов.

11. При температуре тела животного нарушаются процессы сперматогенеза.

12. В условиях низкой температуры мужские гаметы способны длительно сохранять свои жизненные свойства, что позволило разработать технологию искусственного осеменения животных.

13. В благоприятной среде половых путей самки сперматозоиды сохраняют оплодотворяющую способность в течение 10-30 часов.

9. Сперматогенез

Осуществляется в извитых канальцах семенника в 4 стадии:

1. стадия размножения;

2. стадия роста;

3. стадия созревания;

4. стадия формирования.

Во время первой стадии размножения стволовые, лежащие на базальной мембране, клетки (с полным набором хромосом) многократно делятся митозом, образуя множество сперматогоний. При каждом туре деления одна из дочерних клеток остается в этом крайнем ряду как стволовая клетка, другая вытесняется в следующий ряд и вступает в стадию роста.

В стадии роста половые клетки называются сперматоцитами 1-го порядка. Они растут и готовятся к третьей стадии развития. Таким образом, вторая стадия является одновременно интерфазой перед будущим мейозом.

В третьей стадии созревания половые клетки последовательно проходят два деления мейоза. При этом из сперматоцитов 1-го порядка образуются сперматоциты 2-го порядка с половинным набором удвоенных хромосом. Эти клетки после короткой интерфазы вступают во второе деление мейоза, в результате которого формируются сперматиды. Сперматоциты 2-го порядка составляют третий ряд в сперматогенном эпителии. Из-за кратковременности интерфазы сперматоциты 2-го порядка обнаруживаются не на всем протяжении извитых канальцев. Сперматиды представляют самые мелкие клетки в канальцах. Они образуют 2-3 клеточных ряда у внутренних их краев.

В течение четвертой стадии формирования мелкие круглые клетки -сперматиды превращаются постепенно в сперматозоиды, имеющие жгутиковую форму. Для обеспечения этих процессов сперматиды вступают в контакт с трофическими клетками Сертоли, внедряясь в ниши между отростками их цитоплазмы. Упорядочивается расположение ядра, пластинчатого комплекса, центриолей. Из дистальной центриоли вырастает осевая нить, вслед за которой смещается цитоплазма с плазмолеммой, формируя хвостик сперматозоида. Пластинчатый комплекс располагается впереди ядра и преобразуется в акросому. В тело клетки опускаются митохондрии, образуя вокруг осевой спиральную нить. Головки у сформированных сперматозоидов все еще остаются в нишах поддерживающих клеток, а их хвостики свешиваются в просвет извитого канальца.

10. Строение и классификация яйцеклеток

Яйцеклетка - неподвижная, округлой формы клетка с определенным запасом желтковых включений (питательные вещества углеводной, белковой и липидной природы). В зрелых яйцеклетках отсутствуют центросомы (они теряются при завершении стадии созревания).

Яйцеклетки млекопитающих, кроме плазмолеммы (оволеммы), которая является первичной оболочкой, имеют также вторичные оболочки с защитной и трофической функциями: блестящую, или прозрачную, оболочку, состоящую из гликозаминогликанов, белков, и лучистый венец, образованный одним слоем призматических фолликулярных клеток, склеенных между собой гиалуроновой кислотой.

У птиц вторичные оболочки выражены слабо, но значительно развиты третичные оболочки: белочная, подскорлуповые, скорлуповая и надскорлуповая. Они выступают в роли защитных и трофических образований при развитии эмбрионов в условиях суши.

Яйцеклетки классифицируются по количеству и распределению в цитоплазме желтка:

1. Олиголецитальные - маложелтковые яйцеклетки. Свойственны примитивным хордовым животным (ланцетник), живущим в водной среде, и самкам млекопитающих в связи с переходом на внутриутробный путь развития зародышей.

2. Мезолецитальные яйцеклетки со средним накоплением желтка. Присущи большинству рыб и амфибиям.

3. Полилецитальные - многожелтковые яйцеклетки свойственны рептилиям и птицам в связи с наземными условиями развития эмбрионов.

Классификация яйцеклеток по распределению желтка:

1. Изолецитальные яйцеклетки, у которых желтковые включения распределены по цитоплазме относительно равномерно (олиголецитальные яйца ланцетника и млекопитающих);

2. Телолецитальные яйцеклетки. Желток у них смещается на нижний вегетативный полюс клетки, а свободные органеллы и ядро отодвигаются к верхнему анимальному полюсу (у животных с мезо- и телолецитальным типом яиц).

11. Этапы развития зародыша

Эмбриональное развитие - это цепь взаимосвязанных превращений, в результате которых из одноклеточной зиготы образуется многоклеточный организм, способный существовать во внешней среде. В эмбриогенезе, как части онтогенеза, находят свое отражение и процессы филогенеза. Филогенез - это историческое развитие вида от простых форм к сложным. Онтогенез - индивидуальное развитие конкретного организма. Согласно биогенетическому закону онтогенез является краткой формой филогенеза, а поэтому у представителей разных классов животных имеются общие этапы эмбрионального развития:

1. Оплодотворение и образование зиготы;

2. Дробление зиготы и формирование бластулы;

3. Гаструляция и появление двух зародышевых листков (эктодермы и энтодермы);

4. Дифференциация экто - и энтодермы с появлением третьего зародышевого листка - мезодермы, осевых органов (хорды, нервной трубки и первичной кишки) и дальнейшими процессами органогенеза и гистогенеза (развитие органов и тканей).

Оплодотворение - это процесс взаимной ассимиляции яйцеклетки и сперматозоида, при котором возникает одноклеточный организм - зигота, совмещающий две наследственные информации.

Дробление зиготы - это многократное деление зиготы путем митоза без роста образующихся бластомеров. Так формируется простейший многоклеточный организм - бластула. Различаем:

Полное, или голобластическое, дробление, при котором вся зигота дробится на бластомеры (ланцетник, амфибии, млекопитающие);

Неполное, или меробластическое, если только часть зиготы (анимальный полюс) подвергается дроблению (птицы).

Полное дробление, в свою очередь, бывает:

Равномерным - образуются бластомеры относительно равной величины (ланцетник) с синхронным их делением;

Неравномерным - при асинхронном делении с образованием бластомеров разной величины и формы (амфибии, млекопитающие, птицы).

Гаструляция - этап формирования двухслойного зародыша. Его поверхностный клеточный слой называется наружным зародышевым листком - эктодермой, а глубокий клеточный слой - внутренним зародышевым листком - энтодермой.

Типы гаструляции:

1. инвагинация - впячивание бластомеров дна бластулы в направлении крыши (ланцетник);

2. эпиболия - обрастание быстро делящимися мелкими бластомерами крыши бластулы ее краевых зон и дна (амфибии);

3. деляминация - расслоение бластомеров и миграция - перемещение клеток (птицы, млекопитающие).

Дифференцировка зародышевых листков приводит к появлению разнокачественных клеток, дающих зачатки различных тканей и органов. У всех классов животных вначале возникают осевые органы - нервная трубка, хорда, первичная кишка - и третий (по положению средний) зародышевый листок - мезодерма.

12. Особенности эмбрионального развития млекопитающих (образование трофобласта и плодных оболочек)

Особенности эмбриогенеза млекопитающих определяются внутриутробным характером развития, вследствие чего:

1. Яйцеклетка не накапливает больших запасов желтка (олиголецитальный тип).

2. Оплодотворение внутреннее.

3. На этапе полного неравномерного дробления зиготы происходит ранняя дифференциация бластомеров. Одни из них делятся быстрее, характеризуются светлой окраской и мелкими размерами, другие - темной окраской и крупной величиной, так как эти бластомеры запаздывают с делением и дробятся реже. Светлые бластомеры постепенно обволакивают медленно делящиеся темные, в силу чего формируется шаровидная бластула без полости (морула). В моруле темные бластомеры составляют внутреннее ее содержимое в виде плотного узелка клеток, которые в дальнейшем используются на построение тела зародыша - это эмбриобласт.

Светлые бластомеры расположены вокруг эмбриобласта в один слой. Их задачей является всасывание секрета маточных желез (маточное молочко) для обеспечения процессов питания зародыша до сформирования плацентарной связи с организмом матери. Поэтому они образуют трофобласт.

4. Накопление маточного молочка в бластуле оттесняет эмбриобласт кверху и делает его похожим на дискобластулу птиц. Теперь зародыш представляет зародышевый пузырек, или бластоцисту. Как следствие, все дальнейшие процессы развития у млекопитающих повторяют уже известные пути, свойственные эмбриогенезу птиц: гаструляция осуществляется путем деляминации и миграции; формирование осевых органов и мезодермы происходит при участии первичной полоски и узелка, а обособление тела и образование плодных оболочек - туловищной и амниотической складок.

Туловищная складка формируется вследствие активного размножения клеток всех трех зародышевых листков в зонах, окаймляющих зародышевый щиток. Бурный прирост клеток вынуждает их смещаться внутрь и изгибать листки. По мере углубления туловищной складки ее диаметр уменьшается, она все больше обособляет и округляет зародыш, формируя одновременно из энтодермы и висцерального листка мезодермы первичную кишку и желточный мешок с заключенным в нем маточным молочком.

Периферические части эктодермы и париетального листка мезодермы образуют амниотическую круговую складку, края которой постепенно надвигаются над обособляющимся туловищем и полностью смыкаются над ним. Срастание внутренних листков складки формирует внутреннюю водную оболочку - амнион, полость которой заполняется амниотической жидкостью. Сращение наружных листков амниотической складки обеспечивает формирование самой наружной оболочки плода - хориона (ворсинчатая оболочка).

За счет слепого выпячивания через пупочный канал вентральной стенки первичной кишки образуется средняя оболочка - аллантоис, в котором развивается система кровеносных сосудов (сосудистая оболочка).

5. Наружная оболочка - хорион имеет особенно сложное строение и образует множественные выпячивания в форме ворсинок, с помощью которых устанавливается тесная взаимосвязь со слизистой оболочкой матки. В состав ворсинок входят участки срастающегося с хорионом аллантоиса с кровеносными сосудами и трофобласт, клетки которого вырабатывают гормоны для поддержания нормального течения беременности.

6. Совокупность ворсинок аллантохориона и структур эндометрия, с которыми они взаимодействуют, формируют у млекопитающих особый эмбриональный орган - плаценту. Плацента обеспечивает питание зародыша, его газообмен, удаление продуктов метаболизма, надежную защиту от неблагоприятных факторов любой этиологии и гормональную регуляцию развития.

13. Плацента (строение, функции, классификации)

Плацента - это временный орган, который образуется в период эмбрионального развития млекопитающих. Различают детскую и материнскую плаценты. Детская плацента образована совокупностью ворсинок алланто-хориона. Материнская представлена участками слизистой оболочки матки, с которыми взаимодействуют эти ворсинки.

Плацента обеспечивает снабжение зародыша питательными веществами (трофическая функция) и кислородом (дыхательная), освобождение крови зародыша от углекислоты и ненужных продуктов обмена (выделительная), образование гормонов, которые поддерживают нормальное течение беременности (эндокринная), а также формирование плацентарного барьера (защитная функция).

Анатомическая классификация плацент учитывает количество и расположение ворсинок на поверхности аллантохориона.

1. Диффузная плацента выражена у свиней и лошадей (короткие, неразветвленные ворсинки равномерно расположены по всей поверхности хориона).

2. Множественная, или котиледонная, плацента свойственна жвачным. Ворсинки аллантохориона расположены островками - котиледонами.

3. Поясная плацента у хищных представляет собой зону скопления ворсинок, расположенных в виде широкого пояса, окружающего плодный пузырь.

4. У дискоидальной плаценты приматов и грызунов зона ворсинок хориона имеет форму диска.

Гистологическая классификация плацент учитывает степень взаимодействия ворсинок аллантохориона со структурами слизистой оболочки матки. Причем, по мере убывания количества ворсинок они становятся более разветвленными по форме и глубже проникают в слизистую оболочку матки, укорачивая путь перемещения питательных веществ.

1. Эпителиохориальная плацента свойственна свиньям, лошадям. Ворсинки хориона проникают в маточные железы, не разрушая эпителиального слоя. При родах ворсинки легко выдвигаются из желез матки, обычно без кровотечения, поэтому такой тип плацент еще называют полуплацентой.

2. Десмохориальная плацента выражена у жвачных. Ворсинки алланто-хориона внедряются в собственную пластинку эндометрия, в области его утолщений-карункулов.

3. Эндотелиохориальная плацента характерна для хищных животных. Ворсинки детской плаценты соприкасаются с эндотелием кровеносных сосудов.

4. Гемохориальная плацента обнаруживается у приматов. Ворсинки хориона погружаются в заполненные кровью лакуны и омываются материнской кровью. Однако, кровь матери не смешивается с кровью плода.

14. Морфологическая классификация и краткая характеристика основных разновидностей эпителия

В основу морфологической классификации эпителиальных тканей положено два признака:

1. количество слоев эпителиальных клеток;

2. форма клеток. При этом у разновидностей многослойного эпителия учитывается только форма эпителиоцитов поверхностного (покровного) слоя.

Однослойный эпителий, кроме того, может быть построен из одинаковых по форме и высоте клеток, тогда их ядра лежат на одном уровне - однорядный эпителий, и из значительно отличающихся эпителиоцитов.

В таких случаях у низких клеток ядра будут формировать нижний ряд, у средних по величине эпителиоцитов - следующий, расположенный над первым, а у самых высоких еще один-два ряда ядер, что в конечном итоге однослойную по своей сущности ткань переводит в псевдомногослойную форму - многорядный эпителий.

Учитывая изложенное, морфологическую классификацию эпителия можно представить в следующем виде:

Эпителий

Однослойный Многослойный

Однорядный Многорядный Плоский: Переходный Кубический

Плоский Призматический ороговевающий

Кубический реснитчатый неороговевающий

Призматический- (мерцательный) каемчатый Призматический

У любой разновидности однослойного эпителия каждая его клетка имеет связь с базальной мембраной. Стволовые клетки расположены мозаично среди покровных.

У многослойного эпителия различаем три зоны разных по форме и степени дифференцированности эпителиоцитов. С базальной мембраной связан лишь самый нижний слой призматических или высоких кубических клеток. Он называется базальным и состоит из стволовых, многократно делящихся эпителиоцитов. Следующую, промежуточную, зону представляют дифференцирующиеся (созревающие) клетки различной формы, которые могут лежать в один или несколько рядов. На поверхности расположены зрелые дифференцированные эпителиоциты определенной формы и свойства. Многослойные эпителии обеспечивают выполнение защитных функций.

Однослойный плоский эпителий сформирован уплощенными, с неправильными контурами и большой поверхностью клетками. Покрывает серозные оболочки (мезотелий); образует сосудистую выстилку (эндотелий) и альвеолы (респираторный эпителий) легких.

Однослойный кубический эпителий построен из эпителиоцитов, имеющих приблизительно одинаковые ширину основания и высоту. Ядро округлой формы, характеризуется центральным положением. Формирует секреторные отделы желез, стенки мочеобразующих почечных канальцев (нефроны).

Однослойный призматический эпителий образует стенки выводных протоков у экзокринных желез, маточные железы, покрывает слизистую оболочку желудка кишечного типа, тонкой и толстой кишки. Клетки характеризуются большой высотой, узким основанием и продольно овальной формой ядра, смещенного в базальный полюс. Кишечный эпителий является каемчатым за счет микроворсинок на апикальных полюсах энтероцитов.

Однослойный многорядный призматический реснитчатый (мерцательный) эпителий покрывает главным образом слизистую оболочку воздухоносных путей. Самые низкие клиновидные клетки (базальные) постоянно делятся, средние по высоте являются растущими, еще не достигающими свободной поверхности, а высокие - основным типом зрелых эпителиоцитов, несущих на апикальных полюсах до 300 ресничек, которые, сокращаясь, перемещают для откашливания слизь с адсорбированными инородными частицами. Слизь вырабатывают безреснитчатые бокаловидные клетки.

Многослойный плоский неороговевающий эпителий покрывает конъюнктиву и роговицу глаз, начальные отделы пищеварительной трубки, переходные зоны в органах размножения и мочевыделения.

Многослойный плоский ороговевающий эпителий состоит из 5 слоев постепенно ороговевающих и слущивающихся клеток (кератиноцитов) - базального, слоя шиповатых клеток, зернистого, блестящего, рогового. Формирует эпидермис кожи, покрывает наружные половые органы, слизистую оболочку сосковых каналов у молочных желез, механические сосочки ротовой полости.

Многослойный переходный эпителий выстилает слизистые оболочки мочевыводящих путей. Клетки покровной зоны крупные, продольно овальные, выделяют слизь, имеют хорошо развитый гликокаликс в плазмолемме для предупреждения обратного всасывания веществ из мочи.

Многослойный призматический эпителий выражен в устьях главных протоков застенных слюнных желез, у самцов - в слизистой оболочке тазовой части мочеполового канала и в каналах придатков семенников, у самок - в долевых протоках молочных желез, во вторичных и третичных фолликулах яичников.

Многослойный кубический формирует секреторные отделы сальных желез кожи, а у самцов и сперматогенный эпителий извитых канальцев семенников.

15. Общая характеристика крови как ткани внутренней среды организма

Кровь относится к тканям опорно-трофической группы. Вместе с ретикулярной и рыхлой соединительной тканями играет решающую роль в формировании внутренней среды организма. Она имеет жидкую консистенцию и представляет собой систему, состоящую из двух компонентов - межклеточного вещества (плазма) и взвешенных в ней клеток - форменных элементов: эритроцитов, лейкоцитов и тромбоцитов (кровяные пластинки у млекопитающих).

Плазма составляет около 60% массы крови и содержит 90-93% воды и 7-10% сухого остатка. Около 7% его приходится на белки (4% - альбумины, 2,8% - глобулины и 0,4% - фибриноген), 1% - на минеральные вещества, такой же процент остается на углеводы.

Функции белков плазмы крови:

Альбумины: - регуляция кислотно-щелочного равновесия;

Транспортная;

Поддержание определенного уровня осмотического давления.

Глобулины - это иммунные белки (антитела), выполняющие защитную функцию, и разнообразные ферментные системы.

Фибриноген - принимает участие в процессах свертывания крови.

РН крови составляет 7,36 и довольно стабильно удерживается на этом уровне целым рядом буферных систем.

Основные функции крови:

1. Непрерывно циркулируя по кровеносным сосудам, она осуществляет перенос кислорода от легких к тканям, а углекислого газа от тканей к легким (газообменная функция); доставляет всасываемые в пищеварительной системе питательные вещества ко всем органам организма, а продукты обмена к органам выделения (трофическая); транспортирует гормоны, ферменты и другие, биологически активные вещества к местам их активного воздействия.

Все названные стороны функциональных отправлений крови можно свести в одну общую транспортно-трофическую функцию.

2. Гомеостатическая - поддержание постоянства внутренней среды организма (создает оптимальные условия для реакций обмена веществ);

3. Защитная - обеспечение клеточного и гуморального иммунитета, различных форм неспецифической защиты, особенно фагоцитоза инородных частиц, процессов свертывания крови.

4. Регуляторная функция, связанная с поддержанием постоянной температуры тела и ряда других процессов, обеспечиваемых гормонами и другими биологически активными веществами.

Тромбоциты - у млекопитающих безъядерные клетки, величиной в 3-5 мкм, участвуют в процессах свертывания крови.

Лейкоциты делятся на гранулоциты (базофилы, нейтрофилы и эозинофилы) и агранулоциты (моноциты и лимфоциты). Выполняют различные защитные функции.

Эритроциты у млекопитающих - безъядерные клетки, имеют форму двояковогнутых дисков со средним диаметром 6-8 мкм.

Часть плазмы крови через сосуды микроциркуляторного русла постоянно выходит в ткани органов и становится тканевой жидкостью. Отдавая питательные вещества, воспринимая продукты обмена, обогащаясь в кроветворных органах лимфоцитами, последняя попадает в сосуды лимфатической системы в виде лимфы и возвращается в кровеносное русло.

Форменные элементы в крови находятся в определенных количественных соотношениях и составляют ее гемограмму.

Количество форменных элементов исчисляется в 1 мкл крови или литре:

Эритроциты - 5-10 млн в мкл (х 1012 в л);

Лейкоциты - 4,5-14 тыс в мкл (х109 в л) ;

Кровяные пластинки - 250-350 тыс в мкл (х109 в л).

16. Строение и функциональное значение гранулоцитов

Лейкоциты у позвоночных животных - ядросодержащие клетки, способные к активному перемещению в тканях организма. Классификация основана на учете особенностей строения их цитоплазмы.

Лейкоциты, в цитоплазме которых содержится специфическая зернистость, называются зернистыми, или гранулоцитами. Зрелые зернистые лейкоциты имеют расчлененное на сегменты ядро - сегментоядерные клетки, у молодых оно несегментированное. Поэтому принято их разделять на юные формы (бобовидное ядро), палочкоядерные (ядро в виде изогнутой палочки) и сегментоядерные - полностью дифференцированные лейкоциты, ядро которых содержит от 2-х до 5-7 сегментов. В соответствии с различием в окрашивании цитоплазматической зернистости в группе гранулоцитов выделяют 3 разновидности клеток:

Базофилы - зернистость окрашивается основными красителями в фиолетовый цвет;

Эозинофилы - зернистость окрашивается кислыми красителями в различные оттенки красного цвета;

Нейтрофилы - зернистость окрашивается и кислыми, и основными красителями в розово-фиолетовый цвет.

Нейтрофилы - мелкие клетки (9-12 мкм), в цитоплазме которых содержится 2 типа гранул: первичные (базофильные), являющиеся лизосомами, и вторичные оксифильные (содержат катионные белки и щелочную фосфатазу). Для нейтрофилов свойственны самая мелкая (пылевидная) зернистость и наиболее сегментированное ядро. Они являются микрофагами и осуществляют фагоцитарную функцию мелких инородных частиц любой природы, утилизацию комплексов антиген-антитело. Выделяют, кроме того, вещества, стимулирующие регенерацию поврежденных тканей.

Эозинофилы чаще содержат двухсегментное ядро и крупные оксифильные гранулы в цитоплазме. Их диаметр составляет 12-18 мкм. В гранулах содержатся гидролитические ферменты (микрофаги по функции). Проявляют антигистаминную реактивность, стимулируют фагоцитарную активность макрофагов соединительной ткани и формирование у них лизосом, утилизируют комплексы антиген-антитело. Но главная их задача - нейтрализация токсических веществ, поэтому количество эозинофилов резко возрастает при глистных инвазиях.

Базофилы, размером 12-16 мкм, содержат средние по величине базофильные гранулы, в составе которых находятся гепарин (препятствует свертыванию крови) и гистамин (регулирует сосудистую и тканевую проницаемость). Участвуют они и в развитии аллергических реакций.

Процентное соотношение между отдельными разновидностями лейкоцитов называют лейкоцитарной формулой, или лейкограммой. Для гранулоцитов она выглядит следующим образом:

Нейтрофилы - 25-40% - у свиней и жвачных; 50-70% - у лошадей и хищных;

Эозинофилы - 2-4%, у жвачных - 6-8%;

Базофилы - 0,1-2%.

17. Строение и функциональное значение агранулоцитов

Незернистые лейкоциты (агранулоциты) характеризуются отсутствием специфической зернистости в цитоплазме и крупными несегментированными ядрами. В группе агранулоцитов выделяют 2 разновидности клеток: лимфоциты и моноциты.

Лимфоцитам свойственна преимущественно округлая форма ядра с компактным хроматином. У малых лимфоцитов ядро занимает почти всю клетку (ее диаметр 4,5-6 мкм), у средних ободок цитоплазмы более широкий, а их диаметр увеличивается до 7-10 мкм. Большие лимфоциты (10-13 мкм) в периферической крови встречаются крайне редко. Цитоплазма лимфоцитов окрашивается базофильно, в различные оттенки голубого цвета.

Лимфоциты обеспечивают формирование клеточного и гуморального иммунитета. Их классифицируют на Т- и В-лимфоциты.

Т-лимфоциты (тимусзависимые) первичную антигеннезависимую дифференцировку проходят в тимусе. В периферических органах иммунной системы после контакта с антигенами они превращаются в бластные формы, размножаются и подвергаются теперь уже вторичной антигензависимой дифференцировке, в результате которой появляются эффекторные типы Т-клеток:

Т-киллеры, уничтожающие чужеродные клетки и собственные с дефектными фенокопиями (клеточный иммунитет);

Т-хелперы - стимулирующие трансформацию В-лимфоцитов в плазматические клетки;

Т-супрессоры, подавляющие активность В-лимфоцитов;

Т-лимфоциты памяти (долгоживущие клетки), сохраняющие информацию об антигенах.

В-лимфоциты (бурсозависимые). У птиц первично дифференцируются в фабрициевой сумке, у млекопитающих - в красном костном мозге. При вторичной дифференцировке превращаются в плазмоциты, которые вырабатывают в большом количестве антитела, поступающие в кровь и другие биологические жидкости организма, что обеспечивает нейтрализацию антигенов и формирование гуморального иммунитета.

Моноциты - самые крупные клетки крови (18-25 мкм). Ядро иногда имеет бобовидную форму, но чаще неправильную. Цитоплазма выражена значительно, ее доля может доходить до половины объема клетки, окрашивается базофильно - в дымчато-голубой цвет. В ней хорошо развиты лизосомы. Моноциты, циркулирующие в крови, являются предшественниками тканевых и органных макрофагов, формирующих защитную макрофагическую систему в организме - систему мононуклеарных фагоцитов (СМФ). После краткосрочного пребывания в сосудистой крови (12-36 часов) моноциты мигрируют через эндотелий капилляров и венул в ткани и превращаются в фиксированные и свободные макрофаги.

Макрофаги, в первую очередь, утилизируют отмирающие и поврежденные клеточные и тканевые элементы. Но более ответственную роль они выполняют в иммунных реакциях:

Переводят антигены в молекулярную форму и представляют их лимфоцитам (антигенпрезентирующая функция).

Вырабатывают цитокины для стимуляции Т- и В-клеток.

Утилизируют комплексы антигенов с антителами.

Процентное содержание агранулоцитов в лейкограмме:

Моноциты - 1-8%;

Лимфоциты - 20-40% у хищных животных и лошадей, 45-56% - у свиней, 45-65% - у крупного рогатого скота.

18. Морфофункциональная характеристика рыхлой соединительной ткани

Рыхлая соединительная ткань присутствует во всех органах и тканях, образуя основу для размещения эпителия, желез, соединяя в единую систему функциональные структуры органов. Сопровождает сосуды и нервы. Выполняет формообразующую, опорную, защитную и трофическую функции. Ткань состоит из клеток и межклеточного вещества. Это полидифферонная ткань, т.к. ее клетки произошли из различных стволовых.

Подобные документы

    Гистология - учение о развитии, строении, жизнедеятельности и регенерации тканей животных организмов и организма человека. Методы ее исследования, этапы развития, задачи. Основы сравнительной эмбриологии, науки о развитии и строении зародыша человека.

    реферат , добавлен 01.12.2011

    Гистология - наука о строении, развитии и жизнедеятельности тканей животных организмов и общих закономерностях тканевой организации; понятие цитологии и эмбриологии. Основные методы гистологического исследования; приготовление гистологического препарата.

    презентация , добавлен 23.03.2013

    История гистологии - раздела биологии, изучающего строение тканей живых организмов. Методы исследования в гистологии, приготовление гистологического препарата. Гистология ткани - филогенетически сложившейся системы клеток и неклеточных структур.

    реферат , добавлен 07.01.2012

    Основные положения гистологии, которая изучает систему клеток, неклеточных структур, обладающих общностью строения и направленных на выполнение определенных функций. Анализ строения, функций эпителия, крови, лимфы, соединительной, мышечной, нервной ткани.

    реферат , добавлен 23.03.2010

    Изучение видов и функций различных тканей человека. Задачи науки гистологии, которая изучает строение тканей живых организмов. Особенности строения эпителиальной, нервной, мышечной ткани и тканей внутренней среды (соединительной, скелетной и жидкой).

    презентация , добавлен 08.11.2013

    Основной предмет изучения гистологии. Главные этапы гистологического анализа, объекты его исследования. Процесс изготовления гистологического препарата для световой и электронной микроскопии. Флюоресцентная (люминесцентная) микроскопия, сущность метода.

    курсовая работа , добавлен 12.01.2015

    Основные разновидности живых клеток и особенности их строения. Общий план строения эукариотических и прокариотических клеток. Особенности строения растительной и грибной клеток. Сравнительная таблица строения клеток растений, животных, грибов и бактерий.

    реферат , добавлен 01.12.2016

    Техника приготовления гистологических препаратов для световой микроскопии, основные этапы данного процесса и требования к условиям его реализации. Методы исследования в гистологии и цитологии. Примерная схема окраски препаратов гематоксилин – эозином.

    контрольная работа , добавлен 08.10.2013

    Характеристика сперматогенеза, митотического деления клеток по типу мейоза. Исследование этапов дифференцировки клеток, которые в совокупности составляют сперматогенный эпителий. Изучение строения мужских половых органов и их желез, функций простаты.

    реферат , добавлен 05.12.2011

    История зарождения гистологии как науки. Гистологические препараты и методы их исследования. Характеристика этапов приготовления гистологических препаратов: фиксация, проводка, заливка, резка, окрашивание и заключение срезов. Типология тканей человека.

наука, занимающаяся изучением тканей животных. Тканью называют группу клеток, сходных по форме, размерам и функциям и по продуктам своей жизнедеятельности. У всех растений и животных, за исключением самых примитивных, тело состоит из тканей, причем у высших растений и у высокоорганизованных животных ткани отличаются большим разнообразием структуры и сложностью своих продуктов; сочетаясь друг с другом, разные ткани образуют отдельные органы тела.

Гистология изучает ткани животных; исследование растительных тканей обычно относят к анатомии растений. Гистологию иногда называют микроскопической анатомией, поскольку она изучает строение (морфологию) организма на микроскопическом уровне (объектом гистологического исследования служат очень тонкие тканевые срезы и отдельные клетки). Хотя эта наука прежде всего описательная, в ее задачу также входит интерпретация тех изменений, которые происходят в тканях в норме и патологии. Поэтому гистологу необходимо хорошо разбираться в том, как формируются ткани в процессе эмбрионального развития, какова их способность к росту в постэмбриональный период и каким они подвергаются изменениям в различных естественных и экспериментальных условиях, в том числе в ходе своего старения и гибели составляющих их клеток.

История гистологии как отдельной ветви биологии тесно связана с созданием микроскопа и его совершенствованием. М.Мальпиги (1628-1694) называют «отцом микроскопической анатомии», а следовательно гистологии. Гистология обогащалась наблюдениями и методами исследования, проводившимися или создававшимися многими учеными, основные интересы которых лежали в области зоологии или медицины. Об этом свидетельствует гистологическая терминология, увековечившая их имена в названиях впервые описанных ими структур или созданных методов: островки Лангерганса, либеркюновы железы, купферовы клетки, мальпигиев слой, окраска по Максимову, окраска по Гимза и т.п.

В настоящее время получили распространение методы изготовления препаратов и их микроскопического исследования, дающие возможность изучать отдельные клетки. К таким методам относятся техника замороженных срезов, фазово-контрастная микроскопия, гистохимический анализ, культивирование тканей, электронная микроскопия; последняя позволяет детально изучать клеточные структуры (клеточные мембраны, митохондрии и др.). С помощью сканирующего электронного микроскопа удалось выявить интереснейшую трехмерную конфигурацию свободных поверхностей клеток и тканей, которую невозможно увидеть под обычным микроскопом.

Происхождение тканей . Развитие зародыша из оплодотворенного яйца происходит у высших животных в результате многократных клеточных делений (дробления); образующиеся при этом клетки постепенно распределяются по своим местам в разных частях будущего зародыша. Первоначально эмбриональные клетки похожи друг на друга, но по мере нарастания их количества они начинают изменяться, приобретая характерные особенности и способность к выполнению тех или иных специфических функций. Этот процесс, называемый дифференцировкой, в конечном итоге приводит к формированию различных тканей. Все ткани любого животного происходят из трех исходных зародышевых листков: 1) наружного слоя, или эктодермы; 2) самого внутреннего слоя, или энтодермы; и 3) среднего слоя, или мезодермы. Так, например, мышцы и кровь - это производные мезодермы, выстилка кишечного тракта развивается из энтодермы, а эктодерма образует покровные ткани и нервную систему. См. также ЭМБРИОЛОГИЯ. Основные типы тканей . Гистологи обычно различают у человека и высших животных четыре основных ткани: эпителиальную, мышечную, соединительную (включая кровь) и нервную. В одних тканях клетки имеют примерно одинаковую форму и размеры и так плотно прилегают одна к другой, что между ними не остается или почти на остается межклеточного пространства; такие ткани покрывают наружную поверхность тела и выстилают его внутренние полости. В других тканях (костной, хрящевой) клетки расположены не так плотно и окружены межклеточным веществом (матриксом), которое они продуцируют. От клеток нервной ткани (нейронов), образующих головной и спинной мозг, отходят длинные отростки, заканчивающиеся очень далеко от тела клетки, например в местах контакта с мышечными клетками. Таким образом, каждую ткань можно отличить от других по характеру расположения клеток. Некоторым тканям присуще синцитиальное строение, при котором цитоплазматические отростки одной клетки переходят в аналогичные отростки соседних клеток; такое строение наблюдается в зародышевой мезенхиме, рыхлой соединительной ткани, ретикулярной ткани, а также может возникнуть при некоторых заболеваниях.

Многие органы состоят из тканей нескольких типов, которые можно распознать по характерному микроскопическому строению. Ниже дается описание основных типов тканей, встречающихся у всех позвоночных животных. У беспозвоночных, за исключением губок и кишечнополостных, тоже имеются специализированные ткани, аналогичные эпителиальной, мышечной, соединительной и нервной тканям позвоночных.

Эпителиальная ткань . Эпителий может состоять из очень плоских (чешуйчатых), кубических или же цилиндрических клеток. Иногда он бывает многослойным, т.е. состоящим из нескольких слоев клеток; такой эпителий образует, например, наружный слой кожи у человека. В других частях тела, например в желудочно-кишечном тракте, эпителий однослойный, т.е. все его клетки связаны с подлежащей базальной мембраной. В некоторых случаях однослойный эпителий может казаться многослойным: если длинные оси его клеток расположены непараллельно друг другу, то создается впечатление, что клетки находятся на разных уровнях, хотя на самом деле они лежат на одной и той же базальной мембране. Такой эпителий называют многорядным. Свободный край эпителиальных клеток бывает покрыт ресничками, т.е. тонкими волосовидными выростами протоплазмы (такой ресничный эпителий выстилает, например, трахею), или же заканчивается «щеточной каемкой» (эпителий, выстилающий тонкий кишечник); эта каемка состоит из ультрамикроскопических пальцевидных выростов (т.н. микроворсинок) на поверхности клетки. Помимо защитных функций эпителий служит живой мембраной, через которую происходит всасывание клетками газов и растворенных веществ и их выделение наружу. Кроме того, эпителий образует специализированные структуры, например железы, вырабатывающие необходимые организму вещества. Иногда секреторные клетки рассеяны среди других эпителиальных клеток; примером могут служить бокаловидные клетки, вырабатывающие слизь, в поверхностном слое кожи у рыб или в выстилке кишечника у млекопитающих. Мышечная ткань . Мышечная ткань отличается от остальных своей способностью к сокращению. Это свойство обусловлено внутренней организацией мышечных клеток, содержащих большое количество субмикроскопических сократительных структур. Существует три типа мышц: скелетные, называемые также поперечнополосатыми или произвольными; гладкие, или непроизвольные; сердечная мышца, являющаяся поперечнополосатой, но непроизвольной. Гладкая мышечная ткань состоит из веретеновидных одноядерных клеток. Поперечнополосатые мышцы образованы из многоядерных вытянутых сократительных единиц с характерной поперечной исчерченностью, т.е. чередованием светлых и темных полос, перпендикулярных длинной оси. Сердечная мышца состоит из одноядерных клеток, соединенных конец в конец, и имеет поперечную исчерченность; при этом сократительные структуры соседних клеток соединены многочисленными анастомозами, образуя непрерывную сеть. Соединительная ткань . Существуют различные типы соединительной ткани. Самые важные опорные структуры позвоночных состоят из соединительной ткани двух типов - костной и хрящевой. Хрящевые клетки (хондроциты) выделяют вокруг себя плотное упругое основное вещество (матрикс). Костные клетки (остеокласты) окружены основным веществом, содержащим отложения солей, главным образом фосфата кальция. Консистенция каждой из этих тканей определяется обычно характером основного вещества. По мере старения организма содержание минеральных отложений в основном веществе кости возрастает, и она становится более ломкой. У маленьких детей основное вещество кости, а также хряща богато органическими веществами; благодаря этому у них обычно бывают не настоящие переломы костей, а т.н. надломы (переломы по типу «зеленой ветки»). Сухожилия состоят из волокнистой соединительной ткани; ее волокна образованы из коллагена - белка, секретируемого фиброцитами (сухожильными клетками). Жировая ткань бывает расположена в разных частях тела; это своеобразный тип соединительной ткани, состоящий из клеток, в центре которых находится большая глобула жира. Кровь . Кровь представляет собой совершенно особый тип соединительной ткани; некоторые гистологи даже выделяют ее в самостоятельный тип. Кровь позвоночных состоит из жидкой плазмы и форменных элементов: красных кровяных клеток, или эритроцитов, содержащих гемоглобин; разнообразных белых клеток, или лейкоцитов (нейтрофилов, эозинофилов, базофилов, лимфоцитов и моноцитов), и кровяных пластинок, или тромбоцитов. У млекопитающих зрелые эритроциты, поступающие в кровяное русло, не содержат ядер; у всех других позвоночных (рыб, земноводных, пресмыкающихся и птиц) зрелые функционирующие эритроциты содержат ядро. Лейкоциты делят на две группы - зернистых (гранулоциты) и незернистых (агранулоциты) - в зависимости от наличия или отсутствия в их цитоплазме гранул; кроме того, их нетрудно дифференцировать, используя окрашивание специальной смесью красителей: гранулы эозинофилов приобретают при таком окрашивании ярко-розовый цвет, цитоплазма моноцитов и лимфоцитов - голубоватый оттенок, гранулы базофилов - пурпурный оттенок, гранулы нейтрофилов - слабый лиловый оттенок. В кровяном русле клетки окружены прозрачной жидкостью (плазмой), в которой растворены различные вещества. Кровь доставляет кислород в ткани, удаляет из них диоксид углерода и продукты метаболизма, переносит питательные вещества и продукты секреции, например гормоны, из одних частей организма в другие. См. также КРОВЬ. Нервная ткань . Нервная ткань состоит из высоко специализированных клеток - нейронов, сконцентрированных главным образом в сером веществе головного и спинного мозга. Длинный отросток нейрона (аксон) тянется на большие расстояния от того места, где находится тело нервной клетки, содержащее ядро. Аксоны многих нейронов образуют пучки, которые мы называем нервами. От нейронов отходят также дендриты - более короткие отростки, обычно многочисленные и ветвистые. Многие аксоны покрыты специальной миелиновой оболочкой, которая состоит из шванновских клеток, содержащих жироподобный материал. Соседние шванновские клетки разделены небольшими промежутками, называемыми перехватами Ранвье; они образуют характерные углубления на аксоне. Нервная ткань окружена опорной тканью особого типа, известной под названием нейроглии. Замещение ткани и регенерация . На протяжении всей жизни организма постоянно происходит изнашивание или разрушение отдельных клеток, что составляет один из аспектов нормальных физиологических процессов. Кроме того, иногда, например в результате какой-то травмы, происходит утрата той или иной части тела, состоящей из разных тканей. В таких случаях для организма крайне важно воспроизвести утраченную часть. Однако регенерация возможна только в определенных границах. Некоторые относительно просто организованные животные, например планарии (плоские черви), дождевые черви, ракообразные (крабы, омары), морские звезды и голотурии, могут восстанавливать части тела, утраченные целиком по каким-либо причинам, в том числе в результате самопроизвольного отбрасывания (аутотомии). Чтобы произошла регенерация, недостаточно одного лишь образования новых клеток (пролиферации) в сохранившихся тканях; новообразованные клетки должны быть способны к дифференцировке, чтобы обеспечить замену клеток всех типов, входивших в утраченные структуры. У других животных, особенно у позвоночных, регенерация возможна лишь в некоторых случаях. Тритоны (хвостатые амфибии) способны регенерировать хвост и конечности. Млекопитающие лишены этой способности; однако и у них после частичного экспериментального удаления печени можно наблюдать в определенных условиях восстановление довольно значительного участка печеночной ткани. См. также РЕГЕНЕРАЦИЯ.

Более глубокое понимание механизмов регенерации и дифференцировки несомненно откроет много новых возможностей для использования этих процессов в лечебных целях. Фундаментальные исследования уже внесли большой вклад в развитие методов пересадки кожи и роговицы. В большинстве дифференцированных тканей сохраняются клетки, способные к пролиферации и дифференцировке, но существуют ткани (в частности, центральная нервная система у человека), которые, будучи полностью сформированными, не способны к регенерации. Примерно в годовалом возрасте центральная нервная система человека содержит положенное ей число нервных клеток, и хотя нервные волокна, т.е. цитоплазматические отростки нервных клеток, способны регенерировать, случаи восстановления клеток головного или спинного мозга, разрушенных в результате травмы или дегенеративного заболевания, неизвестны.

Классическими примерами замещения нормальных клеток и тканей в организме человека служит обновление крови и верхнего слоя кожи. Наружный слой кожи - эпидермис - лежит на плотном соединительнотканном слое, т.н. дерме, снабженной мельчайшими кровеносными сосудами, доставляющими ей питательные вещества. Эпидермис состоит из многослойного плоского эпителия. Клетки его верхних слоев постепенно трансформируются, превращаясь в тонкие прозрачные чешуйки - процесс, называемый ороговением; в конце концов эти чешуйки слущиваются. Такое слущивание особенно заметно после сильных солнечных ожогов кожи. У земноводных и пресмыкающихся сбрасывание ороговевшего слоя кожи (линька) происходит регулярно. Ежедневная утрата поверхностных клеток кожи компенсируется за счет новых клеток, поступающих из активно растущего нижнего слоя эпидермиса. Различают четыре слоя эпидермиса: наружный роговой слой, под ним - блестящий слой (в котором начинается ороговение, и его клетки при этом становятся прозрачными), ниже - зернистый слой (в его клетках накапливаются пигментные гранулы, что вызывает потемнение кожи, особенно под действием солнечных лучей) и, наконец, самый глубокий - зачатковый, или базальный, слой (в нем на протяжении всей жизни организма происходят митотические деления, дающие новые клетки для замены слущивающихся).

Клетки крови человека и других позвоночных тоже постоянно обновляются. Каждому типу клеток свойственна более или менее определенная продолжительность жизни, по истечении которой они разрушаются и удаляются из крови другими клетками - фагоцитами («пожирателями клеток»), специально приспособленными для этой цели. Новые кровяные клетки (взамен разрушившихся) образуются в кроветворных органах (у человека и млекопитающих - в костном мозге). Если потеря крови (кровотечение) или разрушение клеток крови под действием химических веществ (гемолитических агентов) наносят клеточным популяциям крови большой ущерб, кроветворные органы начинают продуцировать больше клеток. При потере большого количества эритроцитов, снабжающих ткани кислородом, клеткам тела угрожает кислородное голодание, особенно опасное для нервной ткани. При недостатке лейкоцитов организм теряет способность сопротивляться инфекциям, а также удалять из крови разрушившиеся клетки, что само по себе ведет к дальнейшим осложнениям. В нормальных условиях потеря крови служит достаточным стимулом для мобилизации регенеративных функций кроветворных органов.

Выращивание тканевой культуры требует определенных навыков и оборудования, однако это важнейший метод изучения живых тканей. Кроме того, он позволяет получить дополнительные данные о состоянии тканей, изучавшихся обычными гистологическими методами.

Микроскопические исследования и гистологические методы . Даже самый поверхностный осмотр позволяет отличить одни ткани от других. Мышечную, костную, хрящевую и нервную ткани, а также кровь можно распознать невооруженным глазом. Однако для детального исследования необходимо изучать ткани под микроскопом при большом увеличении, позволяющем увидеть отдельные клетки и характер их распределения. Под микроскопом можно исследовать влажные препараты. Пример такого препарата - мазок крови; для его изготовления наносят каплю крови на предметное стекло и размазывают по нему в виде тонкой пленки. Однако эти методы обычно не позволяют получить полную картину распределения клеток, а также участков, в которых ткани соединяются . Живые ткани, извлеченные из тела, подвергаются быстрым изменениям; между тем любое самое незначительное изменение ткани ведет к искажению картины на гистологическом препарате. Поэтому очень важно сразу же после извлечения ткани из организма обеспечить ее сохранность. Это достигается с помощью фиксаторов - жидкостей различного химического состава, которые очень быстро убивают клетки, не искажая детали их строения и обеспечивая сохранение ткани в этом - фиксированном - состоянии. Состав каждого из многочисленных фиксаторов был разработан в результате многократного экспериментирования, и тем же способом многократных проб и ошибок было установлено нужное соотношение в них разных компонентов.

После фиксации ткань обычно подвергают обезвоживанию. Поскольку быстрый перенос в спирт высокой концентрации привел бы к сморщиванию и деформации клеток, обезвоживание производят постепенно: ткань проводят через ряд сосудов, содержащих спирт в последовательно возрастающей концентрации, вплоть до 100%. После этого ткань обычно переносят в жидкость, хорошо смешивающуюся с жидким парафином; чаще всего для этого используют ксилол или толуол. После кратковременного выдерживания в ксилоле ткань способна поглощать парафин. Пропитывание ведется в термостате, чтобы парафин оставался жидким. Всю эту т.н. проводку производят вручную или же помещают образец в специальный прибор, который проделывает все операции автоматически. Используется и более быстрая проводка с использованием растворителей (например, тетрагидрофурана), способных смешиваться как с водой, так и с парафином.

После того как кусочек ткани полностью пропитался парафином, его помещают в небольшую бумажную или металлическую форму и добавляют в нее жидкий парафин, заливая им весь образец. Когда парафин затвердеет, получается твердый блок с заключенной в нем тканью. Теперь ткань можно нарезать. Обычно для этого используют специальный прибор - микротом. Образцы тканей, взятые во время операции, можно нарезать, предварительно заморозив, т.е. не проводя обезвоживания и заливки в парафин.

Описанную выше процедуру приходится несколько модифицировать, если ткань, например кость, содержит твердые включения. Минеральные компоненты кости необходимо предварительно удалить; для этого ткань после фиксации обрабатывают слабыми кислотами - этот процесс называют декальцинированием. Наличие в блоке кости, не подвергшейся декальцинированию, деформирует всю ткань и повреждает режущий край ножа микротома. Можно, однако, распилив кость на мелкие кусочки и обтачивая их каким-либо абразивом, получить шлифы - чрезвычайно тонкие срезы кости, пригодные для изучения под микроскопом.

Микротом состоит из нескольких частей; главные из них - нож и держатель. Парафиновый блок прикрепляют к держателю, который перемещается относительно края ножа в горизонтальной плоскости, а сам нож при этом остается неподвижным. После того как получен один срез, держатель при помощи микрометрических винтов продвигают вперед на определенное расстояние, соответствующее желаемой толщине среза. Толщина срезов может достигать 20 мкм (0,02 мм) или составлять всего 1-2 мкм (0,001-0,002 мм); она зависит от размеров клеток в данной ткани и обычно колеблется от 7 до 10 мкм. Срезы парафиновых блоков с заключенной в них тканью помещают на предметное стекло. Далее удаляют парафин, помещая стекла со срезами в ксилол. Если нужно сохранить в срезах жировые компоненты, то для заливки ткани вместо парафина используют карбовакс - синтетический полимер, растворимый в воде.

После всех этих процедур препарат готов для окрашивания - очень важного этапа изготовления гистологических препаратов. В зависимости от типа ткани и характера исследования применяют разные методы окрашивания. Эти методы, как и методы заливки ткани, вырабатывались в ходе многолетнних экспериментов; однако постоянно создаются и новые методы, что связано как с развитием новых направлений исследований, так и с появлением новых химических веществ и красителей. Красители служат важным инструментом гистологического исследования в силу того, что они по-разному поглощаются разными тканями или их отдельными компонентами (клеточными ядрами, цитоплазмой, мембранными структурами). В основе окрашивания лежит химическое сродство между сложными веществами, входящими в состав красителей, и определенными компонентами клеток и тканей. Красители применяют в виде водных или спиртовых растворов, в зависимости от их растворимости и выбранного метода. После окрашивания препараты промывают в воде или спирте, чтобы удалить избыток красителя; после этого окрашенными остаются только те структуры, которые поглощают данный краситель.

Чтобы препарат сохранялся в течение достаточно долгого времени, окрашенный срез накрывают покровным стеклом, смазанным каким-нибудь клейким веществом, которое постепенно затвердевает. Для этого используют канадский бальзам (природная смола) и различные синтетические среды. Приготовленные таким образом препараты можно хранить годами. Для изучения тканей в электронном микроскопе, позволяющем выявить ультраструктуру клеток и их компонентов, применяют другие методы фиксации (обычно с использованием осмиевой кислоты и глутаральдегида) и другие среды для заливки (обычно эпоксидные смолы). Специальный ультрамикротом со стеклянным или алмазным ножом позволяет получать срезы толщиной менее 1 мкм, а постоянные препараты монтируют не на предметных стеклах, а на медных сеточках. Недавно были созданы методы, позволяющие применять ряд обычных гистологических процедур окрашивания после того, как ткань была подвергнута фиксации и заливке для электронной микроскопии.

Для описанного здесь трудоемкого процесса необходим квалифицированный персонал, однако при массовом производстве микроскопических препаратов используют конвейерную технологию, при которой многие этапы обезвоживания, заливки и даже окрашивания производятся автоматическими приборами для проводки тканей. В тех случаях, когда необходимо срочно поставить диагноз, в частности во время хирургической операции, ткани, полученные при биопсии, быстро фиксируют и замораживают. Срезы таких тканей изготавливают за несколько минут, не заливают и сразу окрашивают. Опытный патоморфолог может по общему характеру распределения клеток сразу поставить диагноз. Однако для детального исследования такие срезы непригодны.

Гистохимия . Некоторые методы окрашивания позволяют выявлять в клетках те или иные химические вещества. Возможно дифференциальное окрашивание жиров, гликогена, нуклеиновых кислот, нуклеопротеинов, определенных ферментов и других химических компонентов клетки. Известны красители, интенсивно окрашивающие ткани с высокой метаболической активностью. Вклад гистохимии в изучение химического состава тканей постоянно возрастает. Подобраны красители, флуорохромы и ферменты, которые можно присоединить к специфическим иммуноглобулинам (антителам) и, наблюдая связывание этого комплекса в клетке, идентифицировать клеточные структуры. Эта область исследований составляет предмет иммуногистохимии. Использование иммунологических маркеров в световой и электронной микроскопии способствует быстрому расширению наших знаний о биологии клетки, а также повышению точности медицинских диагнозов. «Оптическое окрашивание » . Традиционные гистологические методы окрашивания сопряжены с фиксацией, которая убивает ткани. Методы оптического окрашивания основаны на том, что клетки и ткани, различающиеся по толщине и химическому составу, обладают и разными оптическими свойствами. В результате, используя поляризованный свет, дисперсию, интерференцию или фазовый контраст, удается получать изображения, на которых отдельные детали строения хорошо видны благодаря различиям в яркости и (или) окраске, тогда как в обычном световом микроскопе такие детали малоразличимы. Эти методы позволяют изучать как живые, так и фиксированные ткани и исключают появление артефактов, возможных при использовании обычных гистологических методов. См. также АНАТОМИЯ РАСТЕНИЙ. ЛИТЕРАТУРА Хэм А., Кормак Д. Гистология , тт. 1-5. М., 1982-1983

Ткани - это совокупность клеток и неклеточных структур (неклеточных веществ), сходных по происхождению, строению и выполняемым функциям. Выделяют четыре основные группы тканей: эпителиальные, мышечные, соединительные и нервную.

… Эпителиальные ткани покрывают организм снаружи и выстилают изнутри полые органы и стенки полостей тела. Особый вид эпителиальной ткани - железистый эпителий - образует большинство желез (щитовидную, потовые, печень и др.).

… Эпителиальные ткани имеют следующие особенности: — их клетки тесно прилегают друг к другу, образуя пласт, — межклеточного вещества очень мало; — клетки обладают способностью к восстановлению (регенерации).

… Эпителиальные клетки по форме могут быть плоскими, цилиндрическими, кубическими. По количеству пластов эпителии бывают однослойные и многослойные.

… Примеры эпителиев: однослойный плоский выстилает грудную и брюшную полости тела; многослойный плоский образует наружный слой кожи (эпидермис); однослойный цилиндрический выстилает большую часть кишечного тракта; многослойный цилиндрический - полость верхних дыхательных путей); однослойный кубический образует канальцы нефронов почек. Функции эпителиальных тканей; пограничная, защитная, секреторная, всасывания.

СОЕДИНИТЕЛЬНАЯ ТКАНЬ СОБСТВЕННО СОЕДИНИТЕЛЬНАЯ СКЕЛЕТНАЯ Волокнистая Хрящевая 1. рыхлая 1. гиалиновый хрящ 2. плотная 2. эластический хрящ 3. оформленная 3. волокнистый хрящ 4. неоформленная Со специальными свойствами Костная 1. ретикулярная 1. грубоволокнистая 2. жировая 2. пластинчатая: 3. слизистая компактное вещество 4. пигментная губчатое вещество

… Соединительные ткани (ткани внутренней среды) объединяют группы тканей мезодермального происхождения, очень различных по строению и выполняемым функциям. Виды соединительной ткани: костная, хрящевая, подкожная жировая клетчатка, связки, сухожилия, кровь, лимфа и др.

… Соединительные ткани Общей характерной чертой строения этих тканей является рыхлое расположение клеток, отделенных друг от друга хорошо выраженным межклеточным веществом, которое образовано различными волокнами белковой природы (коллагеновыми, эластическими) и основным аморфным веществом.

… Кровь - разновидность соединительной ткани, у которой межклеточное вещество жидкое (плазма), благодаря чему одной из основных функций крови является транспортная (переносит газы, питательные вещества, гормоны, конечные продукты жизнедеятельности клеток и др.).

… Межклеточное вещество рыхлой волокнистой соединительной ткани, находящейся в прослойках между органами, а также соединяющей кожу с мышцами, состоит из аморфного вещества и свободно расположенных в разных направлениях эластических волокон. Благодаря такому строению межклеточного вещества кожа подвижна. Эта ткань выполняет опорную, защитную и питательную функции.

… Мышечные ткани обусловливают все виды двигательных процессов внутри организма, а также перемещение организма и его частей в пространстве.

… Это обеспечивается за счет особых свойств мышечных клеток - возбудимости и сократимости. Во всех клетках мышечных тканей содержатся тончайшие сократительные волоконца - миофибриллы, образованные линейными молекулами белков - актином и миозином. При скольжении их относительно друга происходит изменение длины мышечных клеток.

… Поперечнополосатая (скелетная) мышечная ткань построена из множества многоядерных волокноподобных клеток длиной 1- 12 см. Из нее построены все скелетные мышцы, мышцы языка, стенок ротовой полости, глотки, гортани, верхней части пищевода, мимические, диафрагма. Рисунок 1. Волокна поперечнополосатой мышечной ткани: а) внешний вид волокон; б) поперечный разрез волокон

… Особенности поперечнополосатой мышечной ткани: быстрота и произвольность (т. е. зависимость сокращении от воли, желания человека), потребление большого количества энергии и кислорода, быстрая утомляемость. Рисунок 1. Волокна поперечнополосатой мышечной ткани: а) внешний вид волокон; б) поперечный разрез волокон

… Сердечная ткань состоит из поперечно исчерченных одноядерных мышечных клеток, но обладает иными свойствами. Клетки расположены не параллельным пучком, как скелетные, а ветвятся, образуя единую сеть. Благодаря множеству клеточных контактов поступающий нервный импульс передается от одной клетки к другой, обеспечивая одновременное сокращение, а затем расслабление сердечной мышцы, что позволяет ей выполнять насосную функцию.

… Клетки гладкой мышечной ткани не имеют поперечной исчерченности, они веретеновидные, одноядерные, их длина около 0, 1 мм. Этот вид ткани участвует в образовании стенок трубко-образных внутренних органов и сосудов (пищеварительного тракта, матки, мочевого пузыря, кровеносных и лимфатических сосудов).

… Особенности гладкой мышечной ткани: — непроизвольность и небольшая сила сокращений, — способность к длительному тоническому сокращению, — меньшая утомляемость, — небольшая потребность в энергии и кислороде.

… Нервная ткань, из которой построены головной и спинной мозг, нервные узлы и сплетения, периферические нервы, выполняет функции восприятия, переработки, хранения и передачи информации, поступающей как из окружающей среды, так и от органов самого организма. Деятельность нервной системы обеспечивает реакции организма на различные раздражители, регуляцию и координацию работы всех его органов.

… Нейрон — состоит из тела и отростков двух видов. Тело нейрона представлено ядром и окружающей его областью цитоплазмы. Это метаболический центр нервной клетки; при его разрушении она погибает. Тела нейронов располагаются преимущественно в головном и спинном мозге, т. е. в центральной нервной системе (ЦНС), где их скопления образуют серое вещество мозга. Скопления тел нервных клеток за пределами ЦНС формируют нервные узлы, или ганглии.

Рисунок 2. Различные формы нейронов. а - нервная клетка с одним отростком; б - нервная клетка с двумя отростками; в - нервная клетка с большим количеством отростков. 1 - тело клетки; 2, 3 - отростки. Рисунок 3. Схема строения нейрона и нервного волокна 1 - тело нейрона; 2 - дендриты; 3 - аксон; 4 - коллатерали аксона; 5 - миелиновая оболочка нервного волокна; 6 - концевые разветвления нервного волокна. Стрелками показано направление распространения нервных импульсов (по Полякову).

… Основными свойствами нервных клеток - являются возбудимость и проводимость. Возбудимость - это способность нервной ткани в ответ на раздражение приходить в состояние возбуждения.

… проводимость - способность передавать возбуждение в форме нервного импульса другой клетке (нервной, мышечной, железистой). Благодаря этим свойствам нервной ткани осуществляется восприятие, проведение и формирование ответной реакции организма на действие внешних и внутренних раздражителей.

Что мы знаем о такой науке, как гистология? Косвенно с её основными положениями можно было ознакомиться еще в школе. Но более детально эта наука изучается в высшей школе (университетах) в медицине.

На уровне школьной программы мы знаем, что существует четыре типа тканей, и они являются одной из базовых составляющих нашего тела. А вот людям, которые планируют выбрать или уже выбрали своей профессией врачебное дело, необходимо более детально знакомиться с таким разделом биологии, как гистология.

Что такое гистология

Гистология - это наука, изучающая ткани живых организмов (человека, животных и других их формирование, строение, функции и взаимодействие. Данный раздел науки включает в себя несколько других.

Как учебная дисциплина эта наука включает:

  • цитологию (науку, изучающую клетку);
  • эмбриологию (изучение процесса развития зародыша, особенностей формирования органов и тканей);
  • общую гистологию (науку о развитии, функциях и структуре тканей, изучает особенности тканей);
  • частную гистологию (изучает микростроение органов и их систем).

Уровни организации человеческого организма как целостной системы

Данная иерархия объекта изучения гистологии состоит из нескольких уровней, каждый из которых включает последующий. Таким образом, визуально представить это можно как многоуровневую матрёшку.

  1. Организм . Это биологически целостная система, которая формируется в процессе онтогенеза.
  2. Органы . Это комплекс тканей, которые взаимодействуют между собой, выполняя свои основные функции и обеспечивая выполнение органами базовых функций.
  3. Ткани . На этом уровне объединены клетки вместе с производными. Изучаются типы тканей. Несмотря на то что они могут состоять из разнообразных генетических данных, основные их свойства определяют базовые клетки.
  4. Клетки . Данный уровень представляет основная структурно-функциональная единица ткани - клетка, а также её производные.
  5. Субклеточный уровень . На этом уровне изучаются составляющие клетки - ядро, органеллы, плазмолемма, цитозоль и прочее.
  6. Молекулярный уровень . Данный уровень характеризуется изучением молекулярного состава компонентов клеток, а также их функционирования.

Наука, изучающая ткани: задачи

Как и для любой науки, для гистологии также выделен ряд задач, которые выполняются в ходе изучения и развития данной сферы деятельности. Среди таких задач наиболее важными являются:

  • исследование гистогенеза;
  • трактовка общей гистологической теории;
  • изучение механизмов тканевой регуляции и гомеостаза;
  • изучение таких особенностей клетки, как адаптивность, изменчивость и реактивность;
  • разработка теории регенерации тканей после повреждений, а также методов заместительной терапии тканей;
  • трактовка устройства молекулярно-генетической регуляции, создание новых методов а также перемещения стволовых эмбриональных клеток;
  • изучение процесса развития человека в фазе эмбриона, других периодов человеческого развития, а также проблем с воспроизведением и бесплодием.

Этапы развития гистологии как науки

Как известно, область изучения строения тканей получила название «гистология». Что это такое, учёные принялись выяснять еще до нашей эры.

Так, в истории развития этой сферы можно выделить три основных этапа - домикроскопический (до 17-го века), микроскопический (до 20-го века) и современный (до сегодня). Рассмотрим каждый из этапов более конкретно.

Домикроскопический период

На данном этапе гистологией в её начальном виде занимались такие ученые, как Аристотель, Везалий, Гален и многие другие. В то время объектом изучения были ткани, которые отделялись от организма человека или животного методом препарирования. Данный этап начался в 5-м столетии до нашей эры и продлился до 1665 года.

Микроскопический период

Следующий, микроскопический, период начался с 1665 года. Датирование его объясняется великим изобретением микроскопа в Англии. Учёный использовал микроскоп для изучения различных объектов, включая биологические. Результаты исследования были опубликована в издании «Монография», где и было впервые использовано понятие «клетка».

Выдающимися учеными этого периода, изучавшими ткани и органы, были Марчелло Мальпиги, Антони ван Левенгук и Неемия Грю.

Строение клетки продолжали изучать такие учёные, как Ян Эвангелиста Пуркинье, Роберт Браун, Маттиас Шлейден и Теодор Шванн (его фото размещено ниже). Последний в итоге сформировал которая является актуальной и до сегодня.

Продолжает своё развитие такая наука, как гистология. Что это такое, на данном этапе изучают Камилло Гольджи, Теодор Бовери, Кит Робертс Портер, Кристиан Рене де Дюв. Также к этому имеют отношение работы и других ученых, таких как Иван Дорофеевич Чистяков и Пётр Иванович Перемежко.

Современный этап развития гистологии

Последний этап наука, изучающая ткани организмов, начинает с 1950-го года. Временные рамки определены так потому, что именно тогда для исследования биологических объектов был впервые использован электронный микроскоп, а также введены новые методы исследования, включая применение компьютерных технологий, гистохимии и гисторадиографии.

Что такое ткани

Перейдем непосредственно к главному объекту изучения такой науки, как гистология. Ткани - это эволюционно возникшие системы клеток и неклеточных структур, которые объединены благодаря схожести строения и имеющие общие функции. Другими словами, ткань - это одна из составляющих организма, которая представляет собой объединение клеток и их производных, и является основой для построения внутренних и внешних органов человека.

Ткань состоит не исключительно из клеток. В состав ткани могут входить следующие компоненты: мышечные волокна, синцитий (одна из стадий развития половых клеток мужчины), тромбоциты, эритроциты, роговые чешуйки эпидермиса (постклеточные структуры), а также коллагеновое, эластичное и ретикулярное межклеточные вещества.

Появление понятия «ткань»

Впервые понятие «ткань» было применено английским учёным Неемией Грю. Изучавший тогда ткани растений, ученый заметил сходство клеточных структур с волокнами ткани текстиля. Тогда (1671 год) ткани и были описаны таким понятием.

Мари Франсуа Ксавье Биша, французский анатом, в своих работах еще более прочно закрепил понятие о тканях. Разновидности и процессы в тканях также изучались Алексеем Алексеевичем Заварзиным (теория параллельных рядов), Николаем Григорьевичем Хлопиным (теория дивергентного развития) и многими другими.

А вот первая классификация тканей в таком виде, в каком мы знаем её сейчас, впервые была предложена немецкими микроскопистами Францем Лейдигом и Келикером. Согласно этой классификации, типы тканей включают 4 основные группы: эпителиальная (пограничная), соединительная (опорно-трофическая), мышечная (сокращаемая) и нервная (возбудимая).

Гистологическое исследование в медицине

Сегодня гистология как наука, изучающая ткани, очень помогает при диагностировании состояния внутренних органов человека и назначении дальнейшего лечения.

Когда человеку диагностируют подозрение на наличие злокачественной опухоли в организме, одним из первых назначается гистологическое исследование. Это, по сути, изучение образца тканей из организма пациента, полученных путем биопсии, пункции, кюретажа, с помощью хирургического вмешательства (эксцизионная биопсия) и другими способами.

Благодаря наука, изучающая строение тканей, помогает назначить максимально правильное лечение. На фото выше можно рассмотреть образец тканей трахеи, окрашенный гематоксилином и эозином.

Такой анализ проводится в том случае, если необходимо:

  • подтвердить или опровергнуть поставленный ранее диагноз;
  • установить точный диагноз в случае, когда возникают спорные вопросы;
  • определить наличие злокачественной опухоли на ранних стадиях;
  • наблюдать за динамикой изменений в злокачественных заболеваниях с целью их предупреждения;
  • осуществить дифференциальную диагностику протекающих в органах процессов;
  • определить наличие раковой опухоли, а также стадию её роста;
  • провести анализ происходящих в тканях изменений при уже назначенном лечении.

Образцы тканей детально изучаются под микроскопом традиционным или ускоренным способом. Традиционный способ более долгий, он применяется намного чаще. При этом используется парафин.

А вот ускоренный метод даёт возможность получить результаты анализа в течение часа. Такой способ используется тогда, когда есть необходимость срочно принять решение относительно удаления или сохранения органа пациента.

Результаты гистологического анализа, как правило, наиболее точные, поскольку дают возможность детально изучить клетки тканей на предмет наличия заболевания, степени поражения органа и методов его лечения.

Таким образом, наука, изучающая ткани, даёт возможность не только исследовать под организма, органов, тканей и клеток живого организма, но еще и помогает проводить диагностику и лечение опасных заболеваний и патологических процессов в организме.

Загрузка...
Top