Понятие и классификация измерений. Краткая характеристика основных видов измерений. Виды измерений и их характеристика Методы измерений и их характеристика

Измерение – нахождение истинного значения физической величины опытным путём с использованием специальных технологических устройств, имеющих нормированные характеристики.

Существует 4 основных вида измерений:

1)Прямое измерение – измерение, при котором искомое значение физической величины находят непосредственно из опытных данных или с помощью технического средства измерения непосредственно отсчитывающего значение измеряемой величины по шкале. В этом случае уравнение измерения имеет вид: Q=qU .

2)Косвенное измерение – измерение, при котором значение физической величины находят на основании известной функциональной зависимости между этой величиной и величинами, подлежащими прямым измерениям. В этом случае уравнение измерения имеет вид: Q=f(x1,x2,…,xn) , где x1 - xn – физические величины, полученные путём прямых измерений.

3)Совокупные измерения – производятся одновременно измерение нескольких одноименных величин, при котором искомое значение находят путём решения системы уравнений, полученных при прямых измерениях различных сочетаний этих величин.

4)Совместные измерения – производимые одновременно двух или нескольких неодноимённых физических величин для нахождения функциональной зависимости между ними. Как правило, эти измерения проводятся путём клонирования эксперимента и составления таблицы матрицы рангов.

Кроме того измерения классифицируется по: условиям проведения, характеристике точности, числу выполняемых измерений, характеру измерений во времени, выражению результата измерений.

9. Метод измерений. Классификация методов измерения.

Метод измерений – совокупность приёмов использования принципов и средств измерения. Все существующие методы измерений условно делятся на 2 основных вида:Метод непосредственной оценки – значения определяемой величины определяется непосредственно по отчетному устройству прибора или измерительного устройства прямого действия.Метод сравнения с мерой – измеряется величина, сравнивающаяся с величиной заданной мерой. При этом сравнение может быть переходное, равновремённое, разновремённое и другие. Метод сравнения с мерой делится на следующие два метода:- Нулевой метод - предусматривает одновременное сравнение измеряемой величины и меры, а результирующий эффект воздействия доводится с помощью прибора сравнения до нуля.- Дифференциальный - на измерительный прибор воздействует разность измеряемой величины и известной величины, воспроизводимой мерой, пример – схема неуравновешенного моста.

Оба эти метода делятся на следующие:

1) Метод противопоставления – измеряемая величина и величина, воспроизводимая мерой, одновременно воздействуют на прибор сравнения с помощью которого устанавливаются соотношения между этими величинами. (во сколько раз?)

2) Метод замещения – измеряемую величину замещают известной величиной, воспроизводимой мерой. Широко применяется при измерении неэлектрических величин, при этом методе одновременно или периодически сравнивается измеряемая величина с мерной величиной, а далее измеряют разницу между ними, используя совпадение отметок шкалы или совпадение периодических сигналов по времени.

3) Метод совпадений – разность между измеряемой величиной и величиной, воспроизводимой мерой, измеряют, используя совпадения отметок шкал или периодических сигналов.

Из всех методов измерения метод сравнения с мерой является более точным по сравнению с методом непосредственной оценки, причём дифференциальный метод измерения является более точным, чем нулевой метод измерения.

Недостатком нулевого метода измерения является необходимость иметь большой число мер, различных сочетаний для воспроизведения мерных величин кратных измеряемым. Разновидностью нулевого метода является компенсационный метод измерения, при котором происходит измерения физической величины без нарушения процесса в котором она участвует.

Основные метрологические понятия, термины и определения формулируются государственными стандартами.

Измерение - это процесс нахождения значения физической величины опытным путем с помощью специальных средств. В зависимости от способа получения результата измерения делятся на прямые и косвенные.

При прямых измерениях искомая физическая величина определяется непосредственно по индикатору прибора: напряжение - вольтметра, частота - частотомера, сила тока - амперметра. Прямые измерения очень распространены в метрологической практике.

При косвенных измерениях интересующая нас величина находится расчетным путем по результатам измерений других величин, связанных с искомой величиной определенной функциональной зависимостью. Например, измерив силу тока и напряжение, на основании известной формулы можно определить мощность:

Косвенные измерения также часто применяются в метрологической практике.

Мера (прибор) - это средство измерения, предназначенное для воспроизведения физической величины заданного размера. По своему метрологическому значению, по той роли, которую они играют в деле обеспечения единообразия и верности, меры делятся на образцовые и рабочие.

Эталон - это тело или устройство самой высокой точности, служащее для воспроизведения и хранения единицы физической величины и передачи ее размера нижестоящим по поверочной схеме. Примером точности эталона может служить Российский государственный эталон времени, погрешность которого за 30 000 лет не будет превышать 1с.

Физическая величина - это свойство, общее в качественном отношении для множества объектов, физических систем, их состояний и происходящих в них процессов, но индивидуальное в количественном отношении для каждого из них. По принадлежности к различным группам физических процессов физические величины делятся на электрические, магнитные, пространственно-временные, тепловые и пр.

Значение физической величины - это оценка физической величины в принятых единицах измерения (например, 5 мА - значение силы тока, причем 5 - это числовое значение). Именно этот термин применяют для выражения количественной характеристики рассматриваемого свойства. Не следует говорить и писать «величина силы тока», «величина напряжения», поскольку сила тока и напряжение сами являются величинами. Следует использовать термины «значение силы тока», «значение напряжения».

Единица физической величины - это физическая величина, которой по определению присвоено стандартное числовое значение, равное единице. Единицы физических величин подразделяются на основные и производные.

Из-за большого диапазона реальных значений большинства измеряемых физических величин применение целых единиц не всегда удобно, поскольку в результате измерений получаются большие или малые их значения. Поэтому в системе измерений СИ (SI - система интернациональная) установлены дольные и кратные единицы.

Табл. 1.1. Электрические единицы измерения, используемые в электронике

Электрическая величина Единицы измерения
Наименование Символ обозначения Основная Кратная или дольная
Наименование Русское обозначение Международное обозначение Наименование Русское обозначение Международное обозначение
Сопротивление R, r ом Ом Ω мегаом килоом МОм кОм MΩ kΩ 1 МОм=10 6 Ом 1 кОм=10 3 Ом
Сила тока I, i ампер А A миллиампер микроампер мА мкА mA μA 1 мА=10 -3 А 1 мкА=10 -6 А
Напряжение и ЭДС U, u E, e вольт В V киловольт милливольт микровольт кВ мкВ kV μV 1 кВ=10 3 В 1 мкВ=10 -6 В
Мощность P ватт Вт W гигаватт мегаватт микроватт ГВт МВт мкВт GW MW μW 1 ГВт=10 9 Вт 1 МВт=10 6 Вт 1 мкВт=10 -6 Вт
Электрическая величина Единицы измерения Соотношение кратных (дольных) и основных единиц
Основная Кратная или дольная
Наименование Символ обозначения Наименование Русское обозначение Международное обозначение Наименование Русское обозначение Международное обозначение
Емкость C фарад Ф F микрофарад нанофарад пикофарад мкФ нФ пФ μF nF pF 1 мкФ=10 -6 Ф 1 нФ=10 -9 Ф 1 пФ=10 -12 Ф
Индуктивность L генри Гн H миллигенри микрогенри мГн мкГн mH μH 1 мГн=10 -3 Гн 1 мкГн=10 -6 Гн
Частота F, f герц Гц Hz гигагерц мегагерц ГГц МГц GHz MHz 1 ГГц=10 9 Гц 1 МГц=10 6 Гц
Период T секунда с s милисекунда наносекунда мс нс ms ns 1 мс=10 -3 с 1 нс=10 -9 с
Длина волны λ метр м m миллиметр сантиметр дециметр мм см дм mm cm dm 1 мм=10 -3 м 1 см=10 -2 м 1 дм=10 -1 м
Сдвиг фаз ∆φ радиан рад rad градус º º

Кратная единица физической величины всегда больше основной (системной) в целое число раз. Например, мегаом (10 6 Ом), киловольт (10 3 В)

Дольная единица физической величины меньше основной (системной) в целое число раз. Например, нанофарад (10 -9 Ф), микроампер (10 -6 А).

При выбранной оценке физической величины ее можно охарактеризовать истинным и действительным (измеренным) значением измеряемой физической величины.

Истинное (действительное) значение физической величины - это значение, свободное от погрешности. Нахождение истинного значения является главной проблемой метрологии, так как погрешности при измерении неизбежны. В связи с этим на практике за истинное значение принимают показание образцовой меры (прибора), погрешность которой пренебрежимо мала по сравнению с погрешностью применяемых рабочих мер (приборов).

Измеренное значение физической величины - это значение величины, отсчитанное по рабочей мере (прибору).

Измерительный прибор - это средство измерения, в результате применения которого измеряемая физическая величина становится показанием.

По принципу действия все измерительные приборы делятся на две группы:

Электромеханические приборы, используемые в цепях постоянного тока и на низких частотах;

Электронные приборы, используемые в цепях постоянного тока и во всем диапазоне частот.

По способу выдачи результата измерительные приборы подразделяются на:

- аналоговые (со стрелочным индикатором, самопишущие), показания которых являются непрерывной функцией измерения и измеряемой величины;

- цифровые , показания которых образуются в результате автоматического вырабатывания дискретных сигналов измерительной информации, представленной в цифровой форме.

Различают измерительные приборы прямого действия и приборы сравнения.

Приборы прямого действия отображают измеряемую величину на индикаторе в единицах этой величины. Изменения рода физической величины в процессе измерения не происходит. К таким приборам относятся амперметры и вольтметры.

Приборы сравнения (компараторы) служат для сравнения измеряемых величин с величинами, значения которых известны. По назначению приборы делят на рабочие и образцовые.

Рабочие приборы предназначены только для измерения во всех областях хозяйственной деятельности.

Образцовые приборы служат для поверки и градуирования рабочих приборов. Погрешность измерения образцовых приборов на 1-2 порядка меньше по сравнению с рабочими приборами.

Стоимость прибора напрямую связана с погрешностью измерения: если прибор имеет погрешность в 10 раз меньше, то стоит такой прибор в 10 раз дороже. Использовать образцовые приборы для массовых измерений экономически нецелесообразно, поэтому в лабораториях учебных заведений и на производстве применяются в основном рабочие приборы.

Шкалы аналоговых измерительных приборов (АИП) классифицируются по следующим признакам:

1. По признаку равномерности различают:

- равномерная шкала - это шкала с делениями постоянной длины и с постоянной ценой деления (рис. 1.1, а). Такую шкалу имеют электромеханические приборы только магнитоэлектрической системы;

- неравномерная шкала - это шкала с делениями непостоянной длины и с непостоянной ценой деления (рис. 1.1, б). Такую шкалу имеют электромеханические приборы выпрямительной, электромагнитной, электродинамической, ферродинамической, электростатической, термоэлектрической систем.

Рис. 1.1. Шкалы аналоговых приборов: равномерная (а), неравномерная (б), прямая (б), обратная (г), односторонняя (с)), двухсторонняя (е), безнулевая (ж)

2. По признаку направления градуирования различают:

- прямая шкала градуирована слева направо, т.е. нуль на шкале расположен слева (рис 1.1, в). Такая шкала является самой распространенной в АИП;

- обратная шкала градуирована справа налево, т.е. нуль на шкале расположен справа (рис. 1.1, г). Такая шкала используется, например, в аналоговых мультиметрах при отсчете значения сопротивления резисторов и емкости конденсаторов.

3. По положению нуля на шкале и направлению движения стрелки индикатора различают:

- односторонняя шкала - это шкала, стрелка индикатора которой при измерении отклоняется только в одну сторону от нуля (рис. 1.1, д). Такая шкала является самой распространенной;

- двухсторонняя шкала - это шкала, стрелка индикатора при измерении которой отклоняется как влево, так и вправо от нуля. Причем отклонение влево от нуля дает отрицательные значения измеряемой величины, а отклонение вправо - положительные (рис. 1.1, е). Такую шкалу имеют индикаторы аналоговых измерительных мостов и гальванометры;

- безнулевая шкала - это шкала, на которой отсутствует нулевая отметка (рис. 1.1, ж). Такую шкалу имеют электромеханические частотомеры, генераторы, градуированные по частоте, длительности импульсов, временному сдвигу.

Электромеханические и электронные АИП достаточно широко распространены в метрологической практике. Приборы и их шкалы характеризуются рядом основных показателей.

Деление шкалы - это промежуток между двумя соседними отметками шкалы.

Цена деления шкалы (постоянная прибора) , С, указывает число единиц измеряемой величины, приходящееся на одно деление шкалы (рис.1.2):

Рис. 1.2. Определение цены деления шкалы

(1.2),

где А 1 , А 2 - соседние оцифрованные деления;

n - количество делений между двумя цифрами.

На примере (см. рис. 1.2) цена деления шкалы составляет

В неравномерной шкале цену деления находят на участке шкалы (только не в начале) между двумя соседними оцифрованными делениями.

Шаг шкалы - это интервал оцифрованных делений на шкале прибора. Например, если на шкале индикатора нанесены оцифрованные деления 0-10-20-30-40-50, то шаг шкалы равен 10.

Рабочий участок шкалы - это участок, в пределах которого погрешность прибора не выходит за указанный класс точности. Для шкалы миллиамперметра, показанной на рис. 1.3, а, рабочим участком является участок от 10 до 50 мА (он же является диапазоном измерения в однопредельном приборе). Для шкалы вольтметра, показанной на рис. 1.3 б, рабочим участком является участок от 3 до 10 В. На рабочем участке завод-изготовитель приборов гарантирует заявленный класс точности с первого оцифрованного деления шкалы аналогового индикатора.

Рис. 1.3. Шкалы аналоговых приборов с разными рабочими участками: миллиамперметра (а), и вольтметра (б)

Чувствительность, s, прибора по измеряемому параметру показывает число делений шкалы, приходящееся на единицу измеряемой величины, т.е. является величиной, обратной цене деления:

(1.3).

Чувствительность многопредельного прибора определяют на самом малом пределе измерения.

Частотный диапазон прибора необходимо знать для правильного его использования и для получения наименьшей погрешности измерения. Частотный диапазон - это полоса частот, в пределах которой погрешность прибора, полученная при изменении частоты сигнала, не превышает допустимого предела. Различают приборы для работы в цепях постоянного тока, переменного тока и универсальные (используемые в цепях постоянного и переменного тока).

Для приборов, работающих в цепях постоянного тока, частота равна пулю; для приборов, работающих в цепях переменного тока, и универсальных приборов на шкале индикатора и в паспорте обычно указывается частотный диапазон.

Внутреннее сопротивление прибора (амперметра, вольтметра) обычно указывается в паспорте и на лицевой панели (прямо или косвенно). Для амперметров характерно малое сопротивление R A , для вольтметров - большое сопротивление R В .

Потребляемая прибором мощность определяется по следующим формулам:

для амперметра (1.4),

а для вольтметров (1.5).

Чем потребляемая мощность меньше, тем точнее измерение.

Потребляемый вольтметром ток выражается формулой:

Падение напряжения на амперметре формулой:

(1.7).

Рабочее положение прибора может быть разным:

Горизонтальным (на шкале обозначается символами или );

Вертикальным (на шкале обозначается символами или );

Наклонным (на шкале обозначается символом с указанием угла наклона).

Если допускается любое рабочее положение, то обозначение отсутствуют.

Расшифровка знаков и символов, указанных на лицевой панели прибора приведена в табл.1.2.

Табл. 1.2. Условные обозначения на шкалах электроизмерительных приборов

Наименование Условное обозначение Буквенный шифр
Прибор магнитоэлектрической системы с подвижной рамкой М
Прибор электромагнитной системы Э
Прибор электродинамической системы Д
Прибор ферродинамической системы д
Прибор электростатической системы С
Прибор выпрямительной системы с выпрямителем (выпрямительный прибор) В
Прибор магнитоэлектрический с электронным преобразователем в измерительной цепи (электронный прибор) -
Прибор термоэлектрической системы Т
Прибор вибрационной системы -
Ток постоянный -
Ток переменный (однофазный) -
Ток постоянный и переменный (универсальный прибор) -
Ток трехфазный переменный (общее обозначение) -
Прибор применять при вертикальном положении шкалы -
Прибор применять при горизонтальном положении шкалы -
Наклонное (с углом 60°) -
Класс точности прибора, например 1,5 -
Напряжение испытательное, например 2 кВ -
Прибор защищен от влияния внешнего магнитного поля (1 категория защищенности) -
Прибор защищен от влияния внешнего электрического поля (1 категория защищенности) -
Внимание! Смотри указания в инструкции по эксплуатации прибора -

Предел измерений параметра, А max - это наибольшее значение диапазона измерений.

Диапазон измерений параметра - это область значений измеряемой величины, для которой нормированы допускаемые погрешности АИП.

Методы измерений.

В зависимости от способа обработки экспериментальных данных измерений для получения результата различают следующие виды измерений − прямые, косвенные, совместные, совокупные и измерения корреляционно связанных величин.

Прямое измерение − это измерение, при котором значение величины находят непосредственно из опытных данных в результате выполнения измерения. Пример прямого измерения − измерение вольтметром напряжения источника.

Косвенное измерение − это измерение, при котором искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. При косвенном измерении значение измеряемой величины получают путем решения уравнения y = F(x 1 ,x 2 ,x 3 ,...,x n), где x 1 ,x 2 ,x 3 ,...,x n − значения величин, полученные в результате прямых измерений.

Пример косвенного измерения − сопротивление резистора находят из выражения , в которое подставляют результат прямых измерений падения напряжения U и протекающего через резистор тока I.

Совместные измерения − одновременные измерения значений нескольких неодноименных величин для определения зависимости между ними. Например, требуется определить градуировочную характеристику термосопротивления.

Совокупные измерения − одновременные измерения нескольких значений одноименных величин, при которых искомое значение находят решением системы уравнений, составленных по результатам прямых измерений различных сочетаний значений этих величин.

Измерение корреляционно связанных величин − измерение значений семейства функций х k (t) и у k (t), являющихся реализациями процессов Р х и Р у с целью установления взаимосвязи между ними.

Наличие взаимосвязи выражается в том, что в определенный момент времени t 0 существует такой параметр, при котором реализации процессов Р х и Р у совмещаются наилучшим способом.

Методы измерения выделяются в зависимости от их взаимодействия с мерой, их классификация показана на рис. 1.4.

Рис. 1.4. Классификация методов измерения

Метод измерения - совокупность приемов использования принципов и средств измерений. Измерения производятся одним из двух методов: методом непосредственной оценки или методом сравнения с мерой.

Метод непосредственной оценки - метод, при котором значение искомой величины определяют непосредственно по отсчетному устройству измерительного прибора. Пример метода непосредственной оценки - измерение тока амперметром.

Метод сравнения с мерой - метод измерения, при котором измеряемую искомую величину сравнивают с однородной величиной, воспроизводимой мерой. Метод сравнения с мерой имеет ряд разновидностей:

Дифференциальный метод,

Нулевой метод,

Метод замещения,

Совпадения.

Нулевой метод – это метод, в котором разность между измеряемой величиной и воспроизводимой мерой сводится к 0.

Рис. 1.5. Структурная схема нулевого метода,

где НИ – нуль-индикатор; Е х – объект измерения; U о – мера.

Полярность важна: здесь устройства включены встречно; мы подбираем такую меру, выходной сигнал которой равен сигналу объекта измерения (т.е. i НИ =0). Разность измеряемой величины и величины воспроизводимой мерой в процессе измерения сводится к нулю, что фиксируется с помощью нуль-индикатора. Результат измерения равен значению меры.

Метод обеспечивает высокую точность, если мера обладает высокой точностью, а НИ – высокой чувствительностью. Обычно

Подобный метод лежит в основе построения измерительных мостов. Достоинство метода – точность.

При дифференциальном методе , так же как и при нулевом, измеряемая величина находится путем измерения разницы между искомой величиной и непосредственно или косвенно с мерой.

Рис 1.6. Структурная схема дифференциального метода.

Разность измеряемой величины и величины воспроизводимой мерой измеряется с помощью средства измерения – вольтметра (на рис. 1.6.). Результат определяется как сумма показания средства измерения и величины воспроизводимой мерой . Для этого метода

Метод замещения – метод, при котором измеряемая величина замещается воспроизведенной мерой.

Рис 1.7. Структурная схема метода замещения,

где R x – объект измерения; R 0 – мера.

В зависимости от положения ключа К можно записать уравнение:

i x R x =u пит, i o R o =u пит.

Откуда i x R x =i o R o ,

Примером применения метода замещения может быть измерение сравнительно большого электрического сопротивления на постоянном токе путем поочередного измерения силы тока, протекающего через контролируемый резистор и образцовый. Питание цепи при измерениях должно производится от одного и того же источника тока. Сопротивление источника тока и прибора, измеряющего ток, должно быть очень мало по сравнению с изменяемым и образцовым сопротивлением.

Метод совпадений – это такой метод, при котором измеряемая величина определяется по периодическим сигналам или специальным шкалам. Фигура Лиссажу – классический пример метода совпадений.

Классификация измерительных приборов.

Электроизмерительные приборы различаются по следующим признакам:

По роду измеряемой величины;

По роду тока;

По степени точности;

По принципу действия;

По способу получения отсчета;

По характеру применения.

Кроме этих признаков, электроизмерительные приборы можно также отличать:

По способу монтирования;

По способу защиты от внешних магнитных или электрических полей;

По выносливости в отношении перегрузок;

По пригодности к применению при различных температурах;

По габаритным размерам и другим признакам.

Для измерения электрических величин применяются различные электроизмерительные приборы, а именно:

Тока - амперметр;

Напряжения - вольтметр;

Электрического сопротивления - омметр, мосты сопротивления;

Мощности - ваттметр;

Электрической энергии - счетчик;

Частоты переменного тока - частотомер;

Коэффициента мощности - фазометр.

По роду тока приборы делятся на приборы постоянного тока, приборы переменного тока и приборы постоянного и переменного тока.

По степени точности приборы делятся на девять классов:0,02; 0,05; 0,1; 0,2; 0,5; 1; 1,5; 2,5 и 4 . Цифры указывают значение допустимой приведенной погрешности в процентах.

По принципу действия приборы подразделяются на: магнитоэлектрические; электромагнитные; электродинамические (ферромагнитные); индукционные и другие.

По способу получения отсчета приборы могут быть с непосредственным отсчётом и самозаписывающие.

По характеру применения приборы делятся на стационарные, переносные и для подвижных установок.


Тема 1.2. Метрологические показатели средств измерений.

Общими характеристиками электроизмерительных приборов являются их погрешности, вариация показаний, чувствительность к измеряемой величине, потребляемая мощность, время установления показаний и надежность.

Вариация показаний прибора - это наибольшая разность показаний прибора при одном и том же значении измеряемой величины. Она определяется при плавном подходе стрелки к испытуемой отметке шкалы при движении ее один раз от начальной, а второй раз от конечной отметок шкалы. Вариация показаний характеризует степень устойчивости показаний прибора при одних и тех же условиях измерения одной и той же величины. Она приближенно равна удвоенной погрешности от трения, так как причиной вариации в основном является трение в опорах подвижной части.

Чувствительность электроизмерительного прибора к измеряемой величине х называется производная от перемещения указателя а по измеряемой величине x . Перемещение указателя а , которое выражается в делениях или миллиметрах шкалы, для обширной группы приборов определяется, в первую очередь, углом отклонения подвижной части измерительного механизма. Кроме того, оно зависит от типа отсчетного устройства и его характеристик (стрелочный или световой указатель, длина шкалы, число делений шкалы и др.).

Чувствительность собственно механизма приборов этой группы (независимо от применяемого отсчетного устройства) равна:

(1.9)

Выражением определяется чувствительность прибора в данной точке шкалы. Если чувствительность постоянна, т.е. не зависит от измеряемой величины, то ее можно определить из выражения

В этом случае чувствительность прибора численно равна перемещению указателя, соответствующему единице измеряемой величины. У приборов с постоянной чувствительностью перемещение указателя пропорционально измеряемой величине, т.е. шкала прибора равномерна.

Чувствительность прибора имеет размерность, зависящую от характера измеряемой величины, поэтому, когда пользуются термином «чувствительность», говорят «чувствительность прибора к току», «чувствительность прибора к напряжению» и т.д. Например, чувствительность вольтметра к напряжению равна 10 дел./В.

Величина, обратная чувствительности, называется ценой деления (постоянной) прибора. Она равна числу единиц измеряемой величины, приходящихся на одно деление шкалы:

Например, если S =10 дел./В, то С -0,1 В/дел.

При включении электроизмерительного прибора в цепь, находящуюся под напряжением, прибор потребляет от этой цепи некоторую мощность. В большинстве случаев эта мощность мала с точки зрения экономии электроэнергии. Но при измерении в маломощных цепях в результате потребления приборами мощности может измениться режим работы цепи, что приведет к увеличению погрешности измерения. Поэтому малое потребление мощности от цепи, в которой осуществляется измерение, является достоинством прибора.

Мощность, потребляемая приборами в зависимости от принципа действия, назначения прибора и предела измерения, имеет самые различные значения и для большинства приборов лежит в пределах от 10 -12 до 15 Вт.

После включения электроизмерительного прибора в электрическую цепь до момента установления показаний прибора, когда можно произвести отсчет, проходит некоторый промежуток времени (время успокоения). Под временем установления показаний следовало бы понимать тот промежуток времени, который проходит с момента изменения измеряемой величины до момента, когда указатель займет положение, соответствующее новому значению измеряемой величины. Однако если учесть, что всем приборам присуща некоторая погрешность, то время, которое занимает перемещение указателя в пределах допустимой погрешности прибора, не представляет интереса.

Под временем установления показаний электроизмерительного прибора понимается промежуток времени, прошедший с момента подключения или изменения измеряемой величины до момента, когда отклонение указателя от установившегося значения не превышает 1,5% длины шкалы. Время установления показаний для большинства типов показывающих приборов не превышает 4 с.

Цифровые приборы характеризуются временем измерения , под которым понимают время с момента изменения измеряемой величины или начала цикла измерения до момента получения нового результата на отсчетном устройстве с нормированной погрешностью.

Под надежностью электроизмерительных приборов понимают способность их сохранить заданные характеристики при определенных условиях работы в течение заданного времени. Если значение одной или нескольких характеристик прибора выходит из заданных предельных значений, то говорят, что имеет место отказ. Количественной мерой надежности является минимальная вероятность безотказной работы прибора в заданных промежутке времени и условиях работы.

Вероятностью безотказной работы называется вероятность того, что в течение определенного времени Т непрерывной работы не произойдет ни одного отказа. Время безотказной работы указано в описаниях приборов. Часто пользуются приближенным значением этого показателя, определяемым отношением числа приборов, продолжающих после определенного времени Т безотказно работать, к общему числу испытываемых приборов. Например, для амперметров и вольтметров типа Э8027 минимальное значение вероятности безотказной работы равно 0,96 за 2000 ч. Следовательно, вероятность того, что прибор данного типа сохранит заданные характеристики после 2000 ч работы, составляет не менее 0,96, иными словами, из 100 приборов данного типа после работы в течение 2000 ч, как правило, не более четырех приборов будут нуждаться в ремонте,

К показателям надежности относят также среднее время безотказной работы прибора , которое определяется как среднее арифметическое время исправной работы каждого прибора.

Обычно, когда приборы начинают выпускать серийно, некоторая небольшая часть их отбирается для испытаний на надежность. Показатели надежности, определенные по результатам этих испытаний, присваивают всей серии приборов.

Гарантийным сроком называют период времени, в течение которого завод-изготовитель гарантирует исправную работу изделия при соблюдении правил эксплуатации прибора. Например, для микроамперметров типа М266М предприятие-изготовитель гарантирует безвозмездную замену или ремонт прибора в течение 36 мес со дня отгрузки с предприятия, а для частотомеров типа Э373 этот срок составляет 11 лет.

Измерение – нахождение истинного значения физической величины опытным путём с использованием специальных технологических устройств, имеющих нормированные характеристики.

Существует 4 основных вида измерений:

1)Прямое измерение – измерение, при котором искомое значение физической величины находят непосредственно из опытных данных или с помощью технического средства измерения непосредственно отсчитывающего значение измеряемой величины по шкале. В этом случае уравнение измерения имеет вид: Q=qU .

2)Косвенное измерение – измерение, при котором значение физической величины находят на основании известной функциональной зависимости между этой величиной и величинами, подлежащими прямым измерениям. В этом случае уравнение измерения имеет вид: Q=f(x1,x2,…,xn) , где x1 - xn – физические величины, полученные путём прямых измерений.

3)Совокупные измерения – производятся одновременно измерение нескольких одноименных величин, при котором искомое значение находят путём решения системы уравнений, полученных при прямых измерениях различных сочетаний этих величин.

4)Совместные измерения – производимые одновременно двух или нескольких неодноимённых физических величин для нахождения функциональной зависимости между ними. Как правило, эти измерения проводятся путём клонирования эксперимента и составления таблицы матрицы рангов.

Кроме того измерения классифицируется по: условиям проведения, характеристике точности, числу выполняемых измерений, характеру измерений во времени, выражению результата измерений.

9. Метод измерений. Классификация методов измерения.

Метод измерений – совокупность приёмов использования принципов и средств измерения. Все существующие методы измерений условно делятся на 2 основных вида:Метод непосредственной оценки – значения определяемой величины определяется непосредственно по отчетному устройству прибора или измерительного устройства прямого действия.Метод сравнения с мерой – измеряется величина, сравнивающаяся с величиной заданной мерой. При этом сравнение может быть переходное, равновремённое, разновремённое и другие. Метод сравнения с мерой делится на следующие два метода:- Нулевой метод - предусматривает одновременное сравнение измеряемой величины и меры, а результирующий эффект воздействия доводится с помощью прибора сравнения до нуля.- Дифференциальный - на измерительный прибор воздействует разность измеряемой величины и известной величины, воспроизводимой мерой, пример – схема неуравновешенного моста.

Оба эти метода делятся на следующие:

1) Метод противопоставления – измеряемая величина и величина, воспроизводимая мерой, одновременно воздействуют на прибор сравнения с помощью которого устанавливаются соотношения между этими величинами. (во сколько раз?)

2) Метод замещения – измеряемую величину замещают известной величиной, воспроизводимой мерой. Широко применяется при измерении неэлектрических величин, при этом методе одновременно или периодически сравнивается измеряемая величина с мерной величиной, а далее измеряют разницу между ними, используя совпадение отметок шкалы или совпадение периодических сигналов по времени.

3) Метод совпадений – разность между измеряемой величиной и величиной, воспроизводимой мерой, измеряют, используя совпадения отметок шкал или периодических сигналов.

Из всех методов измерения метод сравнения с мерой является более точным по сравнению с методом непосредственной оценки, причём дифференциальный метод измерения является более точным, чем нулевой метод измерения.

Недостатком нулевого метода измерения является необходимость иметь большой число мер, различных сочетаний для воспроизведения мерных величин кратных измеряемым. Разновидностью нулевого метода является компенсационный метод измерения, при котором происходит измерения физической величины без нарушения процесса в котором она участвует.

Измерение является важнейшим понятием в метрологии. Это организованное действие человека, выполняемое для количественного познания свойств физического объекта с помощью определения опытным путем значения какой–либо физической величины.

Существует несколько видов измерений. При их классификации обычно исходят из характера зависимости измеряемой величины от времени, вида уравнения измерений, условий, определяющих точность результата измерений и способов выражения этих результатов.

По характеру зависимости измеряемой величины от времени измерения разделяются на:

    статические, при которых измеряемая величина остается постоянной во времени;

    динамические, в процессе которых измеряемая величина изменяется и является непостоянной во времени.

Статическими измерениями являются, например, измерения размеров тела, постоянного давления, динамическими – измерения пульсирующих давлений, вибраций.

По числу измерений они делятся на однократные и многократные. Однократным называют измерение, выполненное один раз. Многократным называют измерение физической величины одного размера, результат которого получен из нескольких следующих друг за другом измерений, то есть состоящее из ряда однократных измерений. Многократное измерение выполняют в случае, когда случайная составляющая погрешности однократного измерения может превысить требуемые по условиям задачи значение. Выполнив ряд последовательных отдельных измерений, получают одно многократное измерение, погрешность которого может быть уменьшена методами математической статистики.

По способу получения результатов измерений их разделяют на:

  • косвенные;

    совокупные;

    совместные.

Прямые – это измерения, при которых искомое значение физической величины находят непосредственно из опытных данных. Прямые измерения можно выразить формулой Q = X, где Q – искомое значение измеряемой величины, а X – значение, непосредственно получаемое из опытных данных.

При прямых измерениях экспериментальным операциям подвергают измеряемую величину, которую сравнивают с мерой непосредственно или же с помощью измерительных приборов, градуированных в требуемых единицах. Примерами прямых служат измерения длины тела линейкой, массы при помощи весов и др. Прямые измерения широко применяются в машиностроении, а также при контроле технологических процессов (измерение давления, температуры).

Косвенные – это измерения, при которых искомую величину определяют на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям, т.е. измеряют не собственно определяемую величину, а другие, функционально с ней связанные. Значение измеряемой величины находят путем вычисления по формуле Q = F(x 1 ,x 2 ,…,x n), где Q – искомое значение косвенно измеряемой величины; F – функциональная зависимость, которая заранее известна, x 1 ,x 2 ,…,x n – значения величин, измеренных прямым способом.

Совокупные – это производимые одновременно измерения нескольких одноименных величин, при которых искомую определяют решением системы уравнений, получаемых при прямых измерениях различных сочетаний этих величин.

Совместные – это производимые одновременно измерения двух или нескольких неодноименных величин для нахождения зависимостей между ними.

По условиям, определяющим точность результата, измерения делятся на три класса:

    измерения максимально возможной точности, достижимой при существующем уровне техники. К этому же классу относятся и некоторые специальные измерения, требующие высокой точности;

    контрольно–поверочные измерения, погрешность которых с определенной вероятностью не должна превышать некоторого заданного значения;

    технические измерения, в которых погрешность результата определяется характеристиками средств измерений.

По способу выражения результатов измерений различают абсолютные и относительные измерения.

Абсолютными называются измерения, которые основаны на прямых измерениях одной или нескольких основных величин или на использовании значений физических констант.

Относительными называются измерения отношения величины к одноименной величине, играющей роль единицы, или измерения величины по отношению к одноименной величине, принимаемой за исходную.

Существуют и другие классификации измерений, например, по связи с объектом (контактные и бесконтактные), по условиям измерений (равноточные и неравноточные).

Основными характеристиками измерений являются: принцип измерений, метод измерений, погрешность, точность, правильность и достоверность.

Принцип измерений – физическое явление или совокупность физических явлений, положенных в основу измерений. Например, измерение массы тела при помощи взвешивания с использованием силы тяжести, пропорциональной массе, измерение температуры с использованием термоэлектрического эффекта.

В настоящее время все измерения в соответствии с физическими законами, используемыми при их проведении, сгруппированы в 13 видов измерений. Им в соответствии с классификацией были присвоены двухразрядные коды видов измерений: геометрические (27), механические (28), расхода, вместимости, уровня (29), давления и вакуума (30), физико–химические (31), температурные и теплофизические (32), времени и частоты (33), электрические и магнитные (34), радиоэлектронные (35), виброакустические (36), оптические (37), параметров ионизирующих излучений (38), биомедицинские (39).

Метод измерений – совокупность приемов использования принципов и средств измерений.

Метод измерений – прием или совокупность приемов сравнения измеряемой величины с ее единицей в соответствии с реализованным принципом измерений. Как правило, метод измерений обусловлен устройством средств измерений. Средствами измерений являются используемые технические средства, имеющие нормированные метрологические свойства. Примерами распространенных методов измерений являются следующие методы:

    метод непосредственной оценки – метод, при котором значение величины определяют непосредственно по показывающему средству измерений. Например, взвешивание на циферблатных весах или измерение давления пружинным манометром;

    дифференциальный метод – метод измерений, при котором измеряемая величина сравнивается с однородной величиной, имеющей известное значение, незначительно отличающееся от значения измеряемой величины, и при котором измеряется разность между этими двумя величинами. Этот метод может дать очень точные результаты. Так, если разность составляет 0,1 % измеряемой величины и оценивается прибором с точностью до 1 %, то точность измерения искомой величины составит уже 0,001 %. Например, при сравнении одинаковых линейных мер, где разность между ними определяется окулярным микрометром, позволяющим ее оценить до десятых долей микрона;

    нулевой метод измерений – метод сравнения с мерой, в котором результирующий эффект воздействия измеряемой величины и меры на прибор сравнения доводят до нуля. Мера – средство измерений, предназначенное для воспроизведения и хранения физической величины. Например, измерение массы на равноплечных весах при помощи гирь. Принадлежит к числу очень точных методов.

    метод сравнения с мерой – метод измерений, в котором измеряемую величину сравнивают величиной, воспроизводимой мерой. Например, измерение напряжения постоянного тока на компенсаторе сравнением с известной ЭДС нормального элемента. Результат измерения при этом методе либо вычисляют как сумму значения используемой для сравнения меры и показания измерительного прибора, либо принимают равным значению меры. Существуют различные модификации этого метода: метод измерения замещением (измеряемую величину замещают мерой с известным значением величины, например, при взвешивании поочередным помещением массы и гирь на одну и ту же чашку весов) и метод измерений дополнением (значение измеряемой меры дополняется мерой этой же величины с таким расчетом, чтобы на прибор сравнения воздействовала их сумма, равная заранее заданному значению).

Качество измерений характеризуется точностью, достоверностью, правильностью, сходимостью и воспроизводимостью измерений, а также размером погрешности.

Погрешность измерений – разность между полученным при измерении и истинным значениями измеряемой величины. Погрешность вызывается несовершенством методов и средств измерений, непостоянством условий наблюдения, а также недостаточным опытом наблюдателя или особенностями его органов чувств.

Точность измерений – это характеристика измерений, отражающая близость их результатов к истинному значению измеряемой величины. Количественно точность можно выразить величиной, обратной модулю относительной погрешности.

Правильность измерения определяется как качество измерения, отражающее близость к нулю систематических погрешностей результатов (т.е. таких погрешностей, которые остаются постоянными или закономерно изменяются при повторных измерениях одной и той же величины). Правильность измерений зависит, в частности, от того, насколько действительный размер единицы, в которой выполнено измерение, отличается от ее истинного размера (по определению), т.е. от того, в какой степени были правильны (верны) средства измерений, использованные для данного вида измерений.

Важнейшей характеристикой качества измерений является их достоверность . Она характеризует доверие к результатам измерений и делит их на две категории: достоверные и недостоверные, в зависимости от того, известны или неизвестны вероятностные характеристики их отклонений от истинных значений соответствующих величин. Результаты измерений, достоверность которых неизвестна, не представляют ценности и в ряде случаев могут служить источником дезинформации.

Сходимость (повторяемость) – это качество измерений, отражающее близость друг к другу результатов измерений одного и того же параметра, выполненных повторно одними и теми же средствами измерений, одним и тем же методом в одинаковых условиях и с одинаковой тщательностью.

Воспроизводимость – это качество измерений, отражающее близость друг к другу результатов измерений одного и того же параметра, выполняемых в различных условиях (в различное время, различными средствами и т.д.).

Существует несколько видов измерений. При их классификации обычно исходят из характера зависимости измеряемой величины от времени, вида уравнения измерений, условий, определяющих точность результата измерений и способов выражения этих результатов.

1) По характеру зависимости измеряемой величины от времени:

а) статические - имеют место, когда измеряемая величина практически постоянна (измерения размеров тела, постоянного давления);

б) динамические, связанные с величинами, которые в процессе измерений претерпевают те или иные изменения (измерения пульсирующих давлений, вибраций).

2) По способу получения результатов:

а) Прямые измерения — измерения, при которых искомое значение физической величины находят непосредственно из опытных данных путем ее непосредственного сравнения с мерой. (измерение давления, температуры и др.).

б) Косвенные измерения — измерения, при которых искомую величину определяют на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям, т.е. измеряют не собственно определяемую величину, а другие, функционально с ней связанные. Значение измеряемой величины находят через преобразование или через установленную формулу (определение объема тела по прямым измерениям его геометрических размеров, нахождение удельного электрического сопротивления проводника по его сопротивлению, длине и площади поперечного сечения).

в) Совокупные измерения — это производимые одновременно измерения нескольких одноименных величин, характеризующих Данный предмет или изделие, при которых искомую определяют решением системы уравнений, получаемых при прямых измерениях различных сочетаний этих величин (определение массы отдельных гирь набора (или прогнозирование погоды на основе замеров силы ветра, влажности воздуха, фронтов и т.п).

г) Совместные измерения — это производимые одновременно измерения двух или нескольких неоднородных физических величин для нахождения зависимостей между ними (измерение электрического сопротивления при определенных температурных параметрах и температурных коэффициентов измерительного резистора по данным прямых измерений его сопротивления при различных температурах).

3) По условиям, определяющим точность результата:

а) Измерения максимально возможнойточности, достижимой при существующем уровне техники.

К ним относятся в первую очередь эталонные измерения, связанные с максимально возможной точностью воспроизведения установленных единиц физических величин, и, кроме того, измерения физических констант , прежде всего универсальных (например, абсолютного значения ускорения свободного падения и др.). К этому же классу относятся и некоторые специальные измерения, требующие высокой точности.


б) Контрольно-поверочные измерения, погрешность которых с определенной вероятностью не должна превышать некоторого заданного значения.

К ним относятся измерения, выполняемые лабораториями государственного надзора за внедрением и соблюдением стандартов и состоянием измерительной техники и заводскими измерительными лабораториями, которые гарантируют погрешность результата с определенной вероятностью, не превышающей некоторого заранее заданного значения.

в) Технические измерения, в которых погрешность результата определяется характеристиками средств измерений.

Примерами технических измерений являются измерения, выполняемые в процессе производства на машиностроительных предприятиях, на щитах распределительных устройств электрических станций и др.

4 ) По способу выражения результатов измерений:

а) Абсолютными называются измерения, которые основаны на прямых измерениях одной или нескольких основных величин или на использовании значений физических констант (определение длины в метрах, силы электрического тока в амперах, ускорения свободного падения в метрах на секунду в квадрате).

б) Относительными называются измерения отношения величины к одноименной величине, играющей роль единицы, или измерения величины по отношению к одноименной величине, принимаемой за исходную (измерение относительной влажности воздуха, определяемой как отношение количества водяных паров в 1 м" 3 воздуха к количеству водяных паров, которое насыщает 1 m j воздуха при данной температуре).

5) По характеру изменения измеряемой величины измерения:

а) Статические — применяют для измерения случайных процессов, а затем для определения среднестатистической величины;

б) Постоянные — используют для контроля непрерывных процессов.

6) По количеству измерительной информации измерения:

а) Однократные измерения — это одно измерение одной величины, т.е. число измерений равно числу измеряемых величин. Практическое применение такого вида измерений всегда сопряжено с большими погрешностями.

б) Многократные измерения — характеризуются превышением числа измерений количества измеряемых величин. Преимущество многократных измерений — значительное снижение влияний случайных факторов на погрешность измерения.

Основными характеристиками измерений являются:

Принцип измерений;

Метод измерений;

Погрешность;

Точность;

Правильность;

Достоверность.

Принцип измерении — физическое явление или совокупность физических явлений, положенных в основу измерений (измерение массы тела при помощи взвешивания с использованием силы тяжести, пропорциональной массе, измерение температуры с использованием термоэлектрического эффекта).

Метод измерений — совокупность приемов использования принципов и средств измерений. Средствами измерений являются используемые технические средства, имеющие нормированные метрологические свойства.

Различают методы непосредственной оценки и методы сравнения.

При измерении методом непосредственной оценки искомое значение величины определяют непосредственно по отсчетному устройству средства измерения, которое проградуировано в соответствующих единицах.

Метод сравнения с мерой — метод измерений, в котором измеряемую величину сравнивают с величиной, воспроизводимой мерой (например, сравнение массы на рычажных весах). Отличительной чертой методов сравнения является непо-средственное участие меры в процедуре измерения, в то время как в методе непосредственной оценки мера в явном виде при измерении не присутствует, а ее размеры перенесены на отсчетное устройство (шкалу) средства измерения заранее, при его градуировке. Обязательным в методе сравнения является наличие сравнивающего устройства.

Метод сравнения с мерой имеет несколько разновидностей: нулевой метод, дифференциальный метод, метод замещения и метод совпадений.

Нулевой метод (или метод полного уравновешивания) — метод сравнения с мерой, в котором результирующий эффект воздействия измеряемой величины и встречного воздействия меры на сравнивающее устройство сводят к нулю.

Например . Измерение массы на равноплечих весах, когда воздействие на весы массы m х полностью уравновешивается массой гирь m 0 (рисунок 2).

Рисунок 2 - Метод полного уравновешивания

При дифференциальном методе полное уравновешивание не производят, а разность между измеряемой величиной и величиной, воспроизводимой мерой, отсчитывается по шкале прибора.

Например. Измерение массы на равноплечих весах, когда воздействие массы m х на весы частично уравновешивается массой гирь m 0 , а разность масс отсчитывается по шкале весов, градуированной в единицах массы (рисунок 3).

Рисунок 3 - Дифференциальный метод

В этом случае значение измеряемой величины m х = m 0 + m, где mпоказания весов

Метод замещения — метод сравнения с мерой, в котором измеряемую величину замещают известной величиной, воспроизводимой мерой.

Например.Взвешивание на пружинных весах. Измерение производят в два приема. Вначале на чашу весов помещают взвешиваемую массу и отмечают положение указателя весов; затем массу m х замещают массой гирь m 0 , подбирая ее так, чтобы указатель весов установился точно в том же положении, что и в первом случае. При этом ясно, что m х = m 0 , (рисунок 4).

Рисунок 4 - Метод замещения

В методе совпадений разность между измеряемой величиной и величиной воспроизводимой мерой измеряют, используя совпадения отметок шкал или периодических сигналов.

Например. Измерение числа оборотов вала с помощью стробоскопа - вал периодически освещается вспышками света, и частоту вспышек подбирают так, чтобы метка, нанесенная на вал, казалась наблюдателю неподвижной. Метод совпадений, использующий совпадения основной и нониусной отметок шкал, реализуется в штангенприборах, применяемых для измерения линейных размеров.

Погрешность измерений — отклонение результата измерений от истинного значения измеряемой величины. Погрешность вызывается воздействием множества факторов, таких как: характер измеряемой величины, качество применяемых средств измерений, метод измерений, условия измерения (температура, влажность, давление и т.п.), индивидуальные особенности лица, выполняющего измерения, и др. Под влиянием этих факторов результат измерений будет отличаться от истинного значения измеряемой величины.

Точность измерений — качественная характеристика измерений, отражающая близость их результатов к истинному значению измеряемой величины.

Количественно точность можно выразить величиной «класс точности». Это характеристика, зависящая от способа выражения пределов допускаемых погрешностей средств измерений. Введение класса точности преследовало цель классификации средств измерений по точности. В настоящее время, когда схемы и конструкции средств измерений усложнились, а области применения средств измерений весьма расширились, на погрешность измерений стали существенно влиять и другие факторы: изменения внешних условий и характер изменения измеряемых величин во времени.

Погрешность измерительных приборов перестала быть основной составляющей погрешности измерений, и класс точности не позволяет в полной мере решать практические задачи, перечисленные выше. Область практического применения характеристики «класс точности» ограничена только такими средствами измерений, которые предназначены для измерения статических величин. В международной практике «класс точности» устанавливается только для небольшой части приборов.

Правильность измерений — качество измерений, отражающее близость к нулю систематических погрешностей в их результатах (т.е. таких погрешностей, которые остаются постоянными или закономерно изменяются при повторных измерениях одной и той же величины). Правильность измерений зависит, в частности, от того, насколько действительный размер единицы, в которой выполнено измерение, отличается от ее истинного размера (по определению), т.е. от того, в какой степени были правильны (верны) средства измерений, использованные для данного вида измерений.

Достоверность характеризует доверие к результатам измерений и делит их на две категории: достоверные и недостоверные, в зависимости от того, известны или неизвестны вероятностные характеристики их отклонений от истинных значений соответствующих величин. Поэтому такие вероятности следует рассматривать в качестве критериев достоверности контроля, чтобы в границах допуска правильно охарактеризовать параметры качества и безопасности.

Наличие погрешности ограничивает достоверность измерений, т.е. вносит ограничение в число достоверных значащих цифр числового значения измеряемой величины и определяет точность измерений. Характеристики погрешности измерений должны выбираться при контроле образцов продукции в соответствии с требованиями достоверности контроля.

Измерения как основной объект метрологии связаны в основном с физическими величинами:

Физическая величина — одно из свойств физического объекта, явления, процесса, который является общим в качественном отношении для многих физических объектов, отличаясь при этом количественным значением.

Физическая величина, которой по определению присвоено числовое значение, равное единице, называется единицей физической величины.

Различают основные и производные единицы.

Основные единицы физической величины выбираются произвольно, независимо от других единиц (единица длины — метр, единица массы — килограмм, единица температуры — градус и т.д.)

Единицы, образованные с помощью формул, выражающих зависимость между физическими величинами, называют производными единицами. В этом случае единицы величин будут выражаться через единицы других величин. Например, единица скорости — метр в секунду (м/с), единица плотности — килограмм на метр в квадрате (кг/м 2).

Разные единицы одной и той же величины отличаются друг от друга своим размером. Такие единицы называют кратными (например, километр — 10 3 м, киловатт — 10 3 Вт) или дельными (например, миллиметр — 10 -3 м, миллисекунда — 10-3 с). Такие единицы получают умножением или делением независимой или производной единицы на целое число, обычно на 10.

Единицы физических величин объединяются по определенному принципу в системы единиц. Эти принципы заключаются в следующем: произвольно устанавливают единицы для некоторых величин, называемых основными единицами, и по формулам через основные получают все производные единицы для данной области измерений. Совокупность основных и производных единиц, относящихся к некоторой системе величин и образованная в соответствии с принятыми принципами, составляет систему единиц физических величии.

Многообразие систем единиц для различных областей измерений создавало трудности в научной и экономической деятельности как в отдельных странах, так и в международном масштабе. Поэтому возникла необходимость в создании единой системы единиц, которая включала бы в себя единицы величин для всех разделов физики.

Международная система единиц состоит из семи основных единиц, двух дополнительных единиц и необходимого числа производных единиц.

К основным относятся:

Единица длины — метр — длина пути, которую проходитсвет в вакууме за 1/299792458 долю секунды;

Единица массы — килограмм — масса, равная массе международного прототипа килограмма;

Единица времени — секунда — продолжительность9192631770 периодов излучения, соответствующего переходу между двумя уровнями сверхтонкой структуры основного состояния атома цезия-133 при отсутствии возмущения со стороны внешних полей;

Единица силы электрического тока — ампер — сила неизменяющегося тока, который при прохождении по двум параллельным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии 1 м один от другого ввакууме, создал бы между этими проводниками силу, равную 2 . 10~ 7 Н на каждый метр длины;

Единица термодинамической температуры — кельвин — часть термодинамической температуры тройной точки воды. Допускается также применение шкалы Цельсия;

Единица количества вещества — моль — количество вещества системы, содержащей столько же структурных элементов, сколько атомов содержится в нуклиде углерода-12 массой 0,012 кг;

Единица силы света — кандела — сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540- 10 12 Гц, энергетическая сила которого в этом направлении составляет 1/683 Вт/ср".

Три первые единицы (метр, килограмм, секунда) позволяют образовать производные единицы для измерения механических и акустических величин. При добавлении к указанным четвертой единицы — кельвина можно образовать производные единицы для измерений тепловых величин.

Единицы (метр, килограмм, секунда, ампер) служат основой для образования производных единиц в области электрических, магнитных измерений и измерений ионизирующих излучений. Единица моль используется для образования единиц в области физико-химических измерений.

Дополнительными единицами являются:

Единица плоского угла — радиан и единица телесного угла — стерадиан используются для образования производных единиц, связанных с угловыми величинами (например, угловая скорость, световой поток и др.).

ШКАЛЫ ИЗМЕРЕНИЙ

Шкала наименований - это качественная, а не количественная шкала, она не содержит нуля и единиц измерений (напр., шкала цветов).

Такие шкалы используется для классификации объектов, свойства которых проявляются только в отношении эквивалентности (совпадения или несовпадения). Эти свойства нельзя считать физическими величинами, поэтому шкалы такого вида не являются шкалами ФВ. В шкалах наименований оценивание осуществляется с использованием органов чувств человека, наиболее адекватен результат, выбранный большинством экспертов. Поскольку данные шкалы характеризуются только отношениями эквивалентности, то в них отсутствуют понятия нуля, «больше или меньше» и единицы измерения.

Шкала порядка - характеризует значение измеряемой величины в баллах (напр., шкала землетрясений; силы ветра и др.).

Она является монотонно изменяющейся и позволяет установить отношения «больше - меньше» между величинами, характеризующими это свойство. Нуль существует или не существует, но принципиально невозможно ввести единицы измерения, так как для них не установлено отношение пропорциональности и соответственно нельзя судить, во сколько раз больше или меньше конкретные проявления свойства.

Шкала интервалов - имеет условное нулевое значение, а интервалы устанавливают по согласованию (напр., шкала времени, шкала длины).

Данные шкалы являются дальнейшим развитием шкал порядка. Шкала состоит из одинаковых интервалов, имеет единицу измерения и произвольно выбранное начало - нулевую точку. К таким шкалам относится летоисчисление, температурные шкалы.

Шкала отношений - имеет естественное нулевое значение, а единица измерений устанавливается по согласованию, в зависимости от требования точности измерения (напр., шкала веса).

С формальной точки зрения эта шкала является шкалой интервалов с естественным началом отсчета. К значениям, полученным по шкале отношений, применимы все арифметические действия, что имеет большое значение при измерении ФВ.

Загрузка...
Top