Соли в химии: виды и свойства. Почему соли растворяются в воде? Растворимые и нерастворимые соли

Соль можно определить как соединение, которое образуется в результате реакции между кислотой и основанием, но не является водой. В данном разделе будут рассмотрены те свойства солей, которые связаны с ионными равновесиями.

реакции солей в воде

Несколько позже будет показано, что растворимость-это относительное понятие. Однако для целей предстоящего обсуждения мы можем грубо подразделить все соли на растворимые и нерастворимые в воде.

Некоторые соли при растворении в воде образуют нейтральные растворы. Другие соли образуют кислые либо щелочные растворы. Это обусловлено протеканием обратимой реакции между ионами соли и водой, в результате которой образуются сопряженные кислоты либо основания. Окажется ли раствор соли нейтральным, кислым или щелочным-зависит от типа соли. В этом смысле существуют четыре типа солей.

Соли, образуемые сильными кислотами и слабыми основаниями. Соли этого типа при растворении в воде образуют кислый раствор. В качестве примера приведем хлорид аммония NH4Cl. При растворении этой соли в воде ион аммония действует как

Избыточное количество ионов H3O+, образуемое в этом процессе, обусловливает кислые свойства раствора.

Соли, образуемые слабой кислотой и сильным основанием. Соли этого типа при растворении в воде образуют щелочный раствор. В качестве примера приведем ацетат натрия CH3COONa1 Ацетат-ион действует как основание, акцептируя протон у воды, которая выступает в этом случае в роли кислоты:

Избыточное количество ионов ОН-, образующихся в этом процессе, обусловливает щелочные свойства раствора.

Соли, образуемые сильными кислотами и сильными основаниями. При растворении в воде солей этого типа образуется нейтральный раствор. В качестве примера приведем хлорид натрия NaCl. При растворении в воде эта соль полностью ионизируется, и, следовательно, концентрация ионов Na+ оказывается равной концентрации ионов Cl-. Поскольку ни тот, ни другой ион не вступает в кислотно-основные реакции с водой, в растворе не происходит образования избыточного количества ионов H3O+ либо ОН. Поэтому раствор оказывается нейтральным.

Соли, образуемые слабыми кислотами и слабыми основаниями. Примером солей такого типа является ацетат аммония. При растворении в воде ион аммония реагирует с водой как кислота, а ацетат-ион реагирует с водой как основание. Обе эти реакции описаны выше. Водный раствор соли, образованной слабой кислотой и слабым основанием, может быть слабокислым, слабощелочным либо нейтральным в зависимости от относительных концентраций ионов H3O+ и ОН-, образуемых в результате реакций катионов и анионов соли с водой. Это зависит от соотношения между значениями констант диссоциации катиона и аниона.

Определение солей в рамках теории диссоциации. Соли принято делить на три группы: средние, кислые и основные. В средних солях все атомы водорода соответствую­щей кислоты замещены на атомы металла, в кислых солях они заме­щены только частично, в основных солях группы ОН соответствующего основания частично замещены на кислотные остатки.

Существуют также некоторые другие типы солей, например двой­ные соли, в которых содержатся два разных катиона и один анион: СаСО 3 MgCO 3 (доломит), КСl NaCl (сильвинит), KAl(SO 4) 2 (алюмока­лиевые квасцы); смешанные соли, в которых содержится один катион и два разных аниона: СаОСl 2 (или Са(ОСl)Сl); комплексные соли, в со­став которых входит комплексный ион, состоящий из центрального атома, связанного с несколькими лигандами : K 4 (желтая кровяная соль), K 3 (красная кровяная соль), Na, Cl; гидратные соли (кристаллогидраты), в которых содержатся молекулы кристаллизационной воды: CuSO 4 5H 2 O(медный купорос), Na 2 SO 4 10Н 2 О (глауберова соль).

Название солей образуют из названия аниона, за которым следу­ет название катиона.

Для солей бескислородных кислот к названию неметалла добавля­ют суффикс ид, например хлорид натрия NaCl, сульфид железа(Н) FeS и др.

При наименовании солей кислородсодержащих кислот к латинскому корню названия элемента добавляют в случае высших степеней окисле­ния окончание am , в случае низших степеней окисления окончание -ит. В названиях некоторых кислот для обозначения низших степеней окисле­ния неметалла используют приставку гипо-, для солей хлорной и марган­цовой кислот используют приставку пер-, например: карбонат кальция СаСО 3 , сульфат железа(III) Fe 2 (SO 4) 3 , сульфит железа(II) FeSO 3 , гипо­хлорит калия КОСl, хлорит калия КОСl 2 , хлорат калия КОСl 3 , перхлорат калия КОСl 4 , перманганат калия КМnO 4 , дихромат калия К 2 Сг 2 O 7 .

Кислые и основные соли можно рассматривать как продукт непол­ного превращения кислот и оснований. По международной номен­клатуре атом водорода, входящий в состав кислой соли, обозначают приставкой гидро-, группу ОН - приставкой гидрокси, NaHS - ги­дросульфид натрия, NaHSO 3 - гидросульфит натрия, Mg(OH)Cl - гидроксихлорид магния, Аl(ОН) 2 Сl - дигидроксихлорид алюминия.

В названиях комплексных ионов сначала указывают лиганды, за­вершают названием металла с указанием соответствующей степени окисления (римскими цифрами в скобках). В названиях комплекс­ных катионов используют русские названия металлов, например: Cl 2 - хлорид тетраамминмеди(П), 2 SO 4 - суль­фат диамминсеребра(1). В названиях комплексных анионов исполь­зуют латинские названия металлов с суффиксом -ат, например: К[Аl(ОН) 4 ] - тетрагидроксиалюминат калия, Na - тетра- гидроксихромат натрия, K 4 - гексацианоферрат(Н) калия.

Названия гидратных солеи (кристаллогридратов ) образуют­ся двумя способами. Можно воспользоваться системой названий комплексных катионов, описанной выше; например, медный купо­рос SO 4 Н 2 0 (или CuSO 4 5Н 2 O) можно назвать сульфат тетрааквамеди(П). Однако для наиболее известных гидратных со­лей чаще всего число молекул воды (степень гидратации) указывают численной приставкой к слову «гидрат», например: CuSO 4 5Н 2 O - пентагидрат сульфата меди(И), Na 2 SO 4 10Н 2 О - декагидрат суль­фата натрия, СаСl 2 2Н 2 O - дигидрат хлорида кальция.


Растворимость солей

По растворимости в воде соли делятся на раствори­мые (Р), нерастворимые (Н) и малорастворимые (М). Для определения растворимости солей пользуются таблицей растворимости кислот, осно­ваний и солей в воде. Если таблицы под рукой нет, то можно воспользоваться правилами. Их легко запомнить.

1. Растворимы все соли азотной кислоты - ни­траты.

2. Растворимы все соли соляной кислоты - хло­риды, кроме AgCl (Н) , PbCl 2 (М) .

3. Растворимы все соли серной кислоты - суль­фаты, кроме BaSO 4 (Н) , PbSO 4 (Н) .

4. Растворимы соли натрия и калия.

5. Не растворяются все фосфаты, карбонаты, си­ликаты и сульфиды, кроме солей Na + и K + .

Из всех химических соединений соли являют­ся наиболее многочисленным классом веществ. Это твердые вещества, они отличаются друг от друга по цвету и растворимости в воде. В начале XIX в. шведский химик И. Берцелиус сформулировал определение солей как продуктов реакций кислот с основаниями или соединений, полученных заменой атомов водорода в кислоте металлом. По этому признаку различают соли сред­ние, кислые и основные. Средние, или нормальные, соли - это продукты полного замещения атомов водорода в кислоте на металл.

Например:

Na 2 CO 3 - карбонат натрия;

CuSO 4 - сульфат меди (II) и т. д.

Диссоциируют такие соли на катионы металла и анионы кислотного остатка:

Na 2 CO 3 = 2Na + + CO 2 —

Кислые соли - это продукты неполного заме­щения атомов водорода в кислоте на металл. К кислым солям относят, например, питьевую соду NaHCO 3 , которая состоит из катиона метал­ла Na + и кислотного однозарядного остатка HCO 3 — . Для кислой кальциевой соли формула записывает­ся так: Ca(HCO 3) 2. Названия этих солей складываются из названий средних солей с прибавлением приставки гидро- , например:

Mg(HSO 4) 2 - гидросульфат магния.

Диссоциируют кислые соли следующим обра­зом:

NaHCO 3 = Na + + HCO 3 —
Mg(HSO 4) 2 = Mg 2+ + 2HSO 4 —

Основные соли - это продукты неполного за­мещения гидроксогрупп в основании на кислотный остаток. Например, к таким солям относится знамени­тый малахит (CuOH) 2 CO 3 , о котором вы читали в произведениях П. Бажова. Он состоит из двух основных катионов CuOH + и двухзарядного аниона кислотного остатка CO 3 2- . Катион CuOH + имеет заряд +1, поэтому в моле­куле два таких катиона и один двухзарядный ани­он CO 3 2- объединены в электронейтральную соль.

Названия таких солей будут такими же, как и у нормальных солей, но с прибавлением при­ставки гидроксо- , (CuOH) 2 CO 3 - гидроксокарбонат меди (II) или AlOHCl 2 - гидроксохлорид алюми­ния. Большинство основных солей нерастворимы или малорастворимы.

Последние диссоциируют так:

AlOHCl 2 = AlOH 2 + + 2Cl —

Свойства солей


Первые две реакции обмена были подробно рас­смотрены ранее.

Третья реакция также является реакцией обме­на. Она протекает между растворами солей и со­провождается образованием осадка, например:

Четвертая реакция солей связана с положением металла в электрохимическом ряду напряжений металлов (см. «Электрохимический ряд напряже­ний металлов»). Каждый металл вытесняет из растворов солей все другие металлы, располо­женные правее его в ряду напряжений. Это соблю­дается при выполнении следующих условий:

1) обе соли (и реагирующая, и образующаяся в ре­зультате реакции) должны быть растворимыми;

2) металлы не должны взаимодействовать с водой, поэтому металлы главных подгрупп I и II групп (для последней начиная с Са) не вытесняют дру­гие металлы из растворов солей.

Способы получения солей

Способы получения и химические свойства солей. Соли могут быть получены из неорганических соединений практически любо­го класса. Наряду с этими спо­собами соли бескислородных кислот могут быть получены при не­посредственном взаимодействии металла и неметалла (Cl, S ит. д.).

Многие соли устойчивы при нагревании. Однако соли аммония, а также некоторые соли малоактивных металлов, слабых кислот и кислот, в которых элементы проявляют высшие или низшие степе­ни окисления, при нагревании разлагаются.

СаСO 3 = СаО + СO 2

2Ag 2 CO 3 = 4Ag + 2СO 2 + O 2

NH 4 Cl = NH 3 + НСl

2KNO 3 = 2KNO 2 + O 2

2FeSO 4 = Fe 2 O 3 + SO 2 + SO 3

4FeSO 4 = 2Fe 2 O 3 + 4SO 2 + O 2

2Cu(NO 3) 2 = 2CuO + 4NO 2 + O 2

2AgNO 3 = 2Ag + 2NO 2 + O 2

NH 4 NO 3 = N 2 O + 2H 2 O

(NH 4) 2 Cr 2 O 7 = Cr 2 O 3 + N 2 + 4H 2 O

2КСlO 3 =MnO 2 = 2KCl + 3O 2

4KClO 3 = 3КСlO 4 + KCl

Таблица растворимости солей, кислот и оснований – фундамент, без которого невозможно полноценное освоение химических знаний. Растворимость оснований и солей помогает в обучении не только школьникам, но и профессиональным людям. Создание многих продуктов жизнедеятельности не может обойтись без данных знаний.

Таблица растворимости кислот, солей и оснований в воде

Таблица растворимости солей и оснований в воде – это пособие, которое помогает в освоении химических основ. Разобраться с представленной ниже таблицей помогут следующие примечания.

  • Р – указывает на растворимое вещество;
  • Н – не растворимое вещество;
  • М – вещество мало растворяется в водной среде;
  • РК – вещество способно растворятся только при воздействии сильных органических кислот;
  • Прочерк будет говорить о том, что такого существа не существует в природе;
  • НК – не растворяется ни в кислотах, ни в воде;
  • ? – вопросительный знак говорит о том, что на сегодняшний день нет точных сведений о растворении вещества.

Зачастую таблицу используют химики и школьники, студенты для проведения лабораторных исследований, в ходе которых необходимо установить условия протекания определённых реакций. По таблице получается обнаружить, как поведёт себя вещество в соляной или кислотной среде, возможно ли появление осадка. Осадок при проведении исследований и опытов говорит о необратимости реакции. Это существенный момент, который может повлиять на ходе всей лабораторной работы.

Поваренная соль — это хлорид натрия, применяемый в качестве добавки к пище, консерванта продуктов питания. Используется также в химической промышленности, медицине. Служит важнейшим сырьем для получения едкого натра, соды и других веществ. Формула соли поваренной — NaCl.

Образование ионной связи между натрием и хлором

Химический состав хлорида натрия отражает условная формула NaCl, которая дает представление о равном количестве атомов натрия и хлора. Но вещество образовано не двухатомными молекулами, а состоит из кристаллов. При взаимодействии щелочного металла с сильным неметаллом каждый атом натрия отдает более электроотрицательному хлору. Возникают катионы натрия Na + и анионы кислотного остатка соляной кислоты Cl - . Разноименно заряженные частицы притягиваются, образуя вещество с ионной кристаллической решеткой. Маленькие катионы натрия расположены между крупными анионами хлора. Число положительных частиц в составе хлорида натрия равно количеству отрицательных, вещество в целом является нейтральным.

Химическая формула. Поваренная соль и галит

Соли — это сложные вещества ионного строения, названия которых начинаются с наименования кислотного остатка. Формула соли поваренной — NaCl. Геологи минерал такого состава называют «галит», а осадочную породу — «каменная соль». Устаревшей химический термин, который часто употребляется на производстве, — «хлористый натрий». Это вещество известно людям с глубокой древности, когда-то его считали «белым золотом». Современные ученики школ и студенты при чтении уравнений реакций с участием хлорида натрия называют химические знаки («натрий хлор»).

Проведем несложные расчеты по формуле вещества:

1) Mr (NaCl) = Ar (Na) + Ar (Cl) = 22,99 + 35,45 = 58,44.

Относительная составляет 58,44 (в а.е.м.).

2) Численно равна молекулярному весу молярная масса, но эта величина имеет единицы измерения г/моль: М (NaCl) = 58,44 г/моль.

3) Образец соли массой 100 г содержит 60,663 г атомов хлора и 39,337 г натрия.

Физические свойства поваренной соли

Хрупкие кристаллы галита — бесцветные или белые. В природе также встречаются месторождения каменной соли, окрашенной в серый, желтый либо голубой цвет. Иногда минеральное вещество обладает красным оттенком, что обусловлено видами и количеством примесей. Твердость галита по составляет всего 2-2,5, стекло оставляет на его поверхности черту.

Другие физические параметры хлорида натрия:

  • запах — отсутствует;
  • вкус — соленый;
  • плотность — 2,165 г/ см3 (20 °C);
  • температура плавления — 801 °C;
  • точка кипения — 1413 °C;
  • растворимость в воде — 359 г/л (25 °C);

Получение хлорида натрия в лаборатории

При взаимодействии металлического натрия с газообразным хлором в пробирке образуется вещество белого цвета — хлорид натрия NaCl (формула поваренной соли).

Химия дает представление о различных способах получения одного и того же соединения. Вот некоторые примеры:

NaOH (водн.) + HCl = NaCl + H 2 O.

Окислительно-восстановительная реакция между металлом и кислотой:

2Na + 2HCl = 2NaCl + Н 2 .

Действие кислоты на оксид металла: Na 2 O + 2HCl (водн.) = 2NaCl + H 2 O

Вытеснение слабой кислоты из раствора ее соли более сильной:

Na 2 CO 3 + 2HCl (водн.) = 2NaCl + H 2 O + CO 2 (газ).

Для применения в промышленных масштабах все эти методы слишком дорогие и сложные.

Производство поваренной соли

Еще на заре цивилизации люди знали, что после засолки мясо и рыба сохраняются дольше. Прозрачные, правильной формы кристаллы галита использовались в некоторых древних странах вместо денег и были на вес золота. Поиск и разработка месторождений галита позволили удовлетворить растущие потребности населения и промышленности. Важнейшие природные источники поваренной соли:

  • залежи минерала галита в разных странах;
  • вода морей, океанов и соленых озер;
  • прослойки и корки каменной соли на берегах соленых водоемов;
  • кристаллы галита на стенках вулканических кратеров;
  • солончаки.

В промышленности используются четыре основных способа получения поваренной соли:

  • выщелачивание галита из подземного слоя, испарение полученного рассола;
  • добыча в ;
  • выпаривание или рассола соленых озер (77% от массы сухого остатка приходится на хлорид натрия);
  • использование побочного продукта опреснения соленых вод.

Химические свойства хлорида натрия

По своему составу NaCl — это средняя соль, образованная щелочью и растворимой кислотой. Хлорид натрия — сильный электролит. Притяжение между ионами настолько велико, что его могут разрушить только сильно полярные растворители. В воде вещества распадается, освобождаются катионы и анионы (Na + , Cl -). Их присутствием обусловлена электропроводность, которой обладает раствор поваренной соли. Формула в этом случае записывается так же, как для сухого вещества — NaCl. Одна из качественных реакций на катион натрия — окрашивание в желтый цвет пламени горелки. Для получения результата опыта нужно набрать на чистую проволочную петлю немного твердой соли и внести в среднюю часть пламени. Свойства поваренной соли также связаны с особенностью аниона, которая заключается в качественной реакции на хлорид-ион. При взаимодействии с нитратом серебра в растворе выпадает белый осадок хлорида серебра (фото). Хлороводород вытесняется из соли более сильными кислотами, чем соляная: 2NaCl + H 2 SO 4 = Na 2 SO 4 + 2HCl. При обычных условиях хлорид натрия не подвергается гидролизу.

Сферы применения каменной соли

Хлорид натрия снижает температуру плавления льда, поэтому зимой на дорогах и тротуарах используется смесь соли с песком. Она впитывает в себя большое количество примесей, при таянии загрязняет реки и ручьи. Дорожная соль также ускоряет процесс коррозии автомобильных кузовов, повреждает деревья, посаженные рядом с дорогами. В химической промышленности хлорид натрия используется как сырье для получения большой группы химических веществ:

  • соляной кислоты;
  • металлического натрия;
  • газообразного хлора;
  • каустической соды и других соединений.

Кроме того, поваренная соль применяется в производстве мыла, красителей. Как пищевой антисептик используется при консервировании, засолке грибов, рыбы и овощей. Для борьбы с нарушениями работы щитовидной железы у населения формула соли поваренной обогащается за счет добавления безопасных соединений йода, например, KIO 3 , KI, NaI. Такие добавки поддерживают выработку гормона щитовидной железы, предотвращают заболевание эндемическим зобом.

Значение хлорида натрия для организма человека

Формула соли поваренной, ее состав приобрел жизненно важное значение для здоровья человека. Ионы натрия участвуют в передаче нервных импульсов. Анионы хлора необходимы для выработки соляной кислоты в желудке. Но слишком большое содержание поваренной соли в пище может приводить к высокому кровяному давлению и повышению риска развития заболеваний сердца и сосудов. В медицине при большой кровопотере пациентам вводят физиологический солевой раствор. Для его получения в одном литре дистиллированной воды растворяют 9 г хлорида натрия. Человеческий организм нуждается в непрерывном поступлении этого вещества с пищей. Выводится соль через органы выделения и кожу. Среднее содержание хлорида натрия в теле человека составляет примерно 200 г. Европейцы потребляют в день около 2-6 г поваренной соли, в жарких странах эта цифра выше в связи с более высоким потоотделением.

СОЛИ, класс химических соединений. Общепринятого определения понятия “Соли”, так же как и терминов “кислоты и основания”, продуктами взаимодействием которых соли являются, в настоящее время не существует. Соли могут рассматриваться как продукты замещения протонов водорода кислоты на ионы металлов, NH 4 + , СН 3 NН 3 + и др. катионы или групп ОН основания на анионы кислот (напр., Cl - , SO 4 2-).

Классификация

Продуктами полного замещения являются средние соли, например. Na 2 SO 4 , MgCl 2 , неполного-кислые или основные соли, например KHSO 4 , СuСlOН. Различают также простые соли, включающие один вид катионов и один вид анионов (например, NaCl), двойные соли содержащие два вида катионов (например, KAl(SO 4) 2 12H 2 O), смешанные соли, в составе которых два вида кислотных остатков (например, AgClBr). Комплексные соли содержат комплексные ионы, например K 4 .

Физические свойства

Типичные соли - кристаллические вещества с ионной структурой, например CsF Существуют также ковалентные соли, например АlСl 3 . В действительности характер химической связи,v многих солей смешанный.

По растворимости в воде различают растворимые, мало растворимые и практически нерастворимые соли. К растворимым относятся почти все соли натрия, калия и аммония, многие нитраты, ацетаты и хлориды, за исключением солей поливалентных металлов, гидролизующихся в воде, многие кислые соли.

Растворимость солей в воде при комнатной температуре

Кати- оны Анионы
F - Cl - Br - I - S 2- NO 3 - CO 3 2- SiO 3 2- SO 4 2- PO 4 3-
Na + Р Р Р Р Р Р Р Р Р Р
K + Р Р Р Р Р Р Р Р Р Р
NH 4 + Р Р Р Р Р Р Р Р Р Р
Mg 2+ РК Р Р Р М Р Н РК Р РК
Ca 2+ НК Р Р Р М Р Н РК М РК
Sr 2+ НК Р Р Р Р Р Н РК РК РК
Ba 2+ РК Р Р Р Р Р Н РК НК РК
Sn 2+ Р Р Р М РК Р Н Н Р Н
Pb 2+ Н М М М РК Р Н Н Н Н
Al 3+ М Р Р Р Г Р Г НК Р РК
Cr 3+ Р Р Р Р Г Р Г Н Р РК
Mn 2+ Р Р Р Р Н Р Н Н Р Н
Fe 2+ М Р Р Р Н Р Н Н Р Н
Fe 3+ Р Р Р - - Р Г Н Р РК
Co 2+ М Р Р Р Н Р Н Н Р Н
Ni 2+ М Р Р Р РК Р Н Н Р Н
Cu 2+ М Р Р - Н Р Г Н Р Н
Zn 2+ М Р Р Р РК Р Н Н Р Н
Cd 2+ Р Р Р Р РК Р Н Н Р Н
Hg 2+ Р Р М НК НК Р Н Н Р Н
Hg 2 2+ Р НК НК НК РК Р Н Н М Н
Ag + Р НК НК НК НК Р Н Н М Н

Условные обозначения:

Р - вещество хорошо растворимо в воде; М - малорастворимо; Н - практически нерастворимо в воде, но легко растворяется в слабых или разбавленных кислотах; РК - нерастворимо в воде и растворяется только в сильных неорганических кислотах; НК - нерастворимо ни в воде, ни в кислотах; Г - полностью гидролизуется при растворении и не существует в контакте с водой. Прочерк означает, что такое вещество вообще не существует.

В водных растворах соли полностью или частично диссоциируют на ионы. Соли слабых кислот и(или) слабых оснований подвергаются при этом гидролизу. Водные растворы солей содержат гидратированные ионы, ионные пары и более сложные химические формы, включающие продукты гидролиза и др. Ряд солей растворимы также в спиртах, ацетоне, амидах кислот и др. органических растворителях.

Из водных растворов соли могут кристаллизоваться в виде кристаллогидратов, из неводных - в виде кристаллосольватов, например СаВг 2 ЗС 2 Н 5 ОН.

Данные о различных процессах, протекающих в водносолевых системах, о растворимости солей при их совместном присутствии в зависимости от температуры, давления и концентрации, о составе твердых и жидких фаз могут быть получены при изучении диаграмм растворимости водно-солевых систем.

Общие способы синтеза солей.

1. Получение средних солей:

1) металла с неметаллом: 2Na + Cl 2 = 2NaCl

2) металла с кислотой: Zn + 2HCl = ZnCl 2 + H 2

3) металла с раствором соли менее активного металла Fe + CuSO 4 = FeSO 4 + Cu

4) основного оксида с кислотным оксидом: MgO + CO 2 = MgCO 3

5) основного оксида с кислотой CuO + H 2 SO 4 = CuSO 4 + H 2 O

6) основания с кислотным оксидом Ba(OH) 2 + CO 2 = BaCO 3 + H 2 O

7) основания с кислотой: Ca(OH) 2 + 2HCl = CaCl 2 + 2H 2 O

8) соли с кислотой: MgCO 3 + 2HCl = MgCl 2 + H 2 O + CO 2

BaCl 2 + H 2 SO 4 = BaSO 4 + 2HCl

9) раствора основания с раствором соли: Ba(OH) 2 + Na 2 SO 4 = 2NaOH + BaSO 4

10) растворов двух солей 3CaCl 2 + 2Na 3 PO 4 = Ca 3 (PO 4) 2 + 6NaCl

2. Получение кислых солей:

1. Взаимодействие кислоты с недостатком основания. KOH + H 2 SO 4 = KHSO 4 + H 2 O

2. Взаимодействие основания с избытком кислотного оксида

Ca(OH) 2 + 2CO 2 = Ca(HCO 3) 2

3. Взаимодействие средней соли с кислотой Ca 3 (PO 4) 2 + 4H 3 PO 4 = 3Ca(H 2 PO 4) 2

3. Получение основных солей:

1. Гидролиз солей, образованных слабым основанием и сильной кислотой

ZnCl 2 + H 2 O = Cl + HCl

2. Добавление (по каплям) небольших количеств щелочей к растворам средних солей металлов AlCl 3 + 2NaOH = Cl + 2NaCl

3. Взаимодействие солей слабых кислот со средними солями

2MgCl 2 + 2Na 2 CO 3 + H 2 O = 2 CO 3 + CO 2 + 4NaCl

4. Получение комплексных солей:

1. Реакции солей с лигандами: AgCl + 2NH 3 = Cl

FeCl 3 + 6KCN] = K 3 + 3KCl

5. Получение двойных солей:

1. Совместная кристаллизация двух солей:

Cr 2 (SO 4) 3 + K 2 SO 4 + 24H 2 O = 2 + NaCl

4. Окислительно-восстановительные реакции, обусловленные свойствами катиона или аниона. 2KMnO 4 + 16HCl = 2MnCl 2 + 2KCl + 5Cl 2 + 8H 2 O

2. Химические свойства кислых солей:

Термическое разложение с образованием средней соли

Ca(HCO 3) 2 = CaCO 3 + CO 2 + H 2 O

Взаимодействие со щёлочью. Получение средней соли.

Ba(HCO 3) 2 + Ba(OH) 2 = 2BaCO 3 + 2H 2 O

3. Химические свойства основных солей:

Термическое разложение. 2 CO 3 = 2CuO + CO 2 + H 2 O

Взаимодействие с кислотой: образование средней соли.

Sn(OH)Cl + HCl = SnCl 2 + H 2 O

4. Химические свойства комплексных солей:

1. Разрушение комплексов за счёт образования малорастворимых соединений:

2Cl + K 2 S = CuS + 2KCl + 4NH 3

2. Обмен лигандами между внешней и внутренней сферами.

K 2 + 6H 2 O = Cl 2 + 2KCl

5. Химические свойства двойных солей:

Взаимодействие с растворами щелочей: KCr(SO 4) 2 + 3KOH = Cr(OH) 3 + 2K 2 SO 4

2. Восстановление: KCr(SO 4) 2 + 2H°(Zn, разб. H 2 SO 4) = 2CrSO 4 + H 2 SO 4 + K 2 SO 4

Сырьем для промышленного получения ряда солей-хлоридов, сульфатов, карбонатов, боратов Na, К, Са, Mg служат морская и океаническая вода, природные рассолы, образующиеся при ее испарении, и твердые залежи солей. Для группы минералов, образующих осадочные солевые месторождения (сульфатов и хлоридов Na, К и Mg), применяют условное название “природные соли”. Наиболее крупные месторождения калиевых солей находятся в России (Соликамск), Канаде и Германии, мощные залежи фосфатных руд - в Северной Африке, России и Казахстане, NaNO3 - в Чили.

Соли используют в пищевой, химической, металлургической, стекольной, кожевенной, текстильной промышленности, в сельском хозяйстве, медицине и т. д.

Основные виды солей

1. Бораты (оксобораты), соли борных кислот: метаборной НВО 2 , ортоборной Н 3 ВО 3 и не выделенных в свободном состоянии полиборных. По числу атомов бора в молекуле делятся на моно-, ди, тетра-, гексабораты и т. д. Бораты называют также по образующим их кислотам и по числу молей В 2 О 3 , приходящемуся на 1 моль основного оксида. Так различные метабораты могут быть названы моноборатами, если содержат анион В(ОН) 4 или цепочечный анион {ВО 2 } n n- диборатами - если содержат цепочечный сдвоенный анион { В 2 О 3 (OН) 2 } n 2n- триборатами - если содержат кольцевой анион (В 3 О 6) 3- .

Загрузка...
Top