Регулируемый драйвер фонарь 15 в. USBISP - заливаем собственную прошивку в фонарик. Какие светодиоды Cree в фонариках устанавливаются наиболее часто

Светодиоды для своего питания требуют применения устройств, которые будут стабилизировать ток, проходящий через них. В случае индикаторных и других маломощных светодиодов можно обойтись резисторами. Их несложный расчет можно еще упростить, воспользовавшись "Калькулятором светодиодов" .

Для использования мощных светодиодов не обойтись без использования токостабилизирующих устройств – драйверов. Правильные драйвера имеют очень высокий КПД - до 90-95%. Кроме того, они обеспечивают стабильный ток и при изменении напряжения источника питания. А это может быть актуально, если светодиод питается, например, от аккумуляторов. Самые простые ограничители тока - резисторы - обеспечить это не могут по своей природе.

Немного ознакомиться с теорией линейных и импульсных стабилизаторов тока можно в статье "Драйвера для светодиодов" .

Готовый драйвер, конечно, можно купить. Но гораздо интереснее сделать его своими руками. Для этого потребуются базовые навыки чтения электрических схем и владения паяльником. Рассмотрим несколько простых схем самодельных драйверов для мощных светодиодов.


Простой драйвер. Собран на макетке, питает могучий Cree MT-G2

Очень простая схема линейного драйвера для светодиода. Q1 – N-канальный полевой транзистор достаточной мощности. Подойдет, например, IRFZ48 или IRF530. Q2 – биполярный npn-транзистор. Я использовал 2N3004, можно взять любой похожий. Резистор R2 – резистор мощностью 0.5-2Вт, который будет определять силу тока драйвера. Сопротивление R2 2.2Ом обеспечивает ток в 200-300мА. Входное напряжение не должно быть очень большим – желательно не превышать 12-15В. Драйвер линейный, поэтому КПД драйвера будет определяться отношением V LED / V IN , где V LED – падение напряжения на светодиоде, а V IN – входное напряжение. Чем больше будет разница между входным напряжением и падением на светодиоде и чем больше будет ток драйвера, тем сильнее будет греться транзистор Q1 и резистор R2. Тем не менее, V IN должно быть больше V LED на, как минимум, 1-2В.

Для тестов я собрал схему на макетной плате и запитал мощный светодиод CREE MT-G2 . Напряжение источника питания - 9В, падение напряжения на светодиоде - 6В. Драйвер заработал сразу. И даже с таким небольшим током (240мА) мосфет рассеивает 0,24 * 3 = 0,72 Вт тепла, что совсем не мало.

Схема очень проста и даже в готовом устройстве может быть собрана навесным монтажом.

Схема следующего самодельного драйвера также предельно проста. Она предполагает использование микросхемы понижающего преобразователя напряжения LM317. Данная микросхема может быть использована как стабилизатор тока.


Еще более простой драйвер на микросхеме LM317

Входное напряжение может быть до 37В, оно должно быть как минимум на 3В выше падения напряжения на светодиоде. Сопротивление резистора R1 рассчитывается по формуле R1 = 1.2 / I, где I – требуемая сила тока. Ток не должен превышать 1.5А. Но при таком токе резистор R1 должен быть способен рассеять 1.5 * 1.5 * 0.8 = 1.8 Вт тепла. Микросхема LM317 также будет сильно греться и без радиатора не обойтись. Драйвер также линейный, поэтому для того, чтобы КПД был максимальным, разница V IN и V LED должна быть как можно меньше. Поскольку схема очень простая, она также может быть собрана навесным монтажом.

На той же макетной плате была собрана схема с двумя одноваттными резисторами сопротивленим 2.2 Ом. Сила тока получилась меньше расчетной, поскольку контакты в макетке не идеальны и добавляют сопротивления.

Следующий драйвер является импульсным понижающим. Собран он на микросхеме QX5241 .


Схема также проста, но состоит из чуть большего количества деталей и здесь уже без изготовления печатной платы не обойтись. Кроме того сама микросхема QX5241 выполнена в достаточно мелком корпусе SOT23-6 и требует внимания при пайке.

Входное напряжение не должно превышать 36В, максимальный ток стабилизации – 3А. Входной конденсатор С1 может быть любым – электролитическим, керамическим или танталовым. Его емкость – до 100мкФ, максимальное рабочее напряжение – не менее чем в 2 раза больше, чем входное. Конденсатор С2 керамический. Конденсатор С3 – керамический, емкость 10мкФ, напряжение – не менее чем в 2 раза больше, чем входное. Резистор R1 должен иметь мощность не менее чем 1Вт. Его сопротивление рассчитывается по формуле R1 = 0.2 / I, где I – требуемый ток драйвера. Резистор R2 - любой сопротивлением 20-100кОм. Диод Шоттки D1 должен с запасом выдерживать обратное напряжение – не менее чем в 2 раза по значению больше входного. И рассчитан должен быть на ток не менее требуемого тока драйвера. Один из важнейших элементов схемы – полевой транзистор Q1. Это должен быть N-канальный полевик с минимально возможным сопротивлением в открытом состоянии, безусловно, он должен с запасом выдерживать входное напряжение и нужную силу тока. Хороший вариант – полевые транзисторы SI4178, IRF7201 и др. Дроссель L1 должен иметь индуктивность 20-40мкГн и максимальный рабочий ток не менее требуемого тока драйвера.

Количество деталей этого драйвера совсем небольшое, все они имеют компактный размер. В итоге может получиться достаточно миниатюрный и, вместе с тем, мощный драйвер. Это импульсный драйвер, его КПД существенно выше, чем у линейных драйверов. Тем не менее, рекомендуется подбирать входное напряжение всего на 2-3В больше, чем падение напряжения на светодиодах. Драйвер интересен еще и тем, что выход 2 (DIM) микросхемы QX5241 может быть использован для диммирования – регулирования силы тока драйвера и, соответственно, яркости свечения светодиода. Для этого на этот выход нужно подавать импульсы (ШИМ) с частотой до 20КГц. С этим сможет справиться любой подходящий микроконтроллер. В итоге может получиться драйвер с несколькими режимами работы.

(13 оценок, средняя 4.58 из 5) 

» рассматривалось, в том числе, изменение светодиодной матрицы в приобретенном фонарике. Целью доработки было повышение надежности источника света, за счет изменения схемы подключения светодиодов, с параллельного включения на комбинированное.

Светодиоды гораздо более требовательны к источнику питания, чем другие источники света. Например, превышение тока на 20% сократит срок их службы в несколько раз.

Основной характеристикой светодиодов, которая определяют яркость их свечения, является не напряжение, а ток. Чтобы светодиоды гарантированно отработали заявленное количество часов, необходим драйвер, который стабилизирует протекающий через цепь светодиодов ток и длительно сохранит устойчивую яркость света.

Для маломощных светоизлучающих диодов, возможно их использование и без драйвера, но в этом случае его роль выполняют ограничительные резисторы. Такое подключение было использовано в приведенной выше самоделке. Это простое решение защищает светодиоды от превышения допустимого тока, в пределах расчетного источника питания, но стабилизация при этом отсутствует.

В этой статье, рассмотрим возможность усовершенствовать приведенную выше конструкцию и повысить эксплуатационные свойства фонаря с питанием от внешнего аккумулятора.

Для стабилизации тока через светодиоды, добавим в конструкцию фонаря простой линейный драйвер - стабилизатор тока с обратной связью. Здесь ток является ведущим параметром, а напряжение питания светодиодной сборки может автоматически варьироваться в определенных пределах. Драйвер обеспечивает стабилизацию выходного тока при нестабильном входном напряжении или колебаниях напряжения в системе, причем подстройка тока происходит плавно, не создавая высокочастотных помех свойственных импульсным стабилизаторам. Схема такого драйвера крайне проста в изготовлении и настройке, но меньший КПД (около 80%) является за это платой.

Для исключения критического разряда источника питания (ниже 12 В), что особенно опасно для литиевых аккумуляторов, в схему дополнительно введем индикацию предельного разряда или отключение аккумулятора при низком напряжении.

Изготовление драйвера

1. Для решения указанных предложений изготовим следующую схему питания светодиодной матрицы.

Ток питания светодиодной матрицы проходит через регулирующий транзистор VT2 и ограничительное сопротивление R5. Ток через управляющий транзистор VT1 задается подбором сопротивления R4 и может изменяться в зависимости от изменения падения напряжения на резисторе R5, также используемом в качестве резистора токовой обратной связи. При увеличении тока в цепочке - светодиоды, VT2, R5, по какой-либо причине, увеличивается падение напряжения на R5. Соответствующее увеличение напряжения на базе транзистора VT1, приоткрывает его, уменьшая этим напряжение на базе VT2. А это прикрывает транзистор VT2, уменьшая и стабилизируя этим, ток через светодиоды. При уменьшении тока на светодиодах и VT2, процессы протекают в обратном порядке. Таким образом, за счет обратной связи, при изменении напряжения на источнике питания (с 17 до 12 вольт) или возможных изменениях параметров схемы (температура, выход из строя светодиода), ток через светодиоды постоянен в течение всего периода разряда аккумулятора.

На детекторе напряжения, специализированной микросхеме DA1, собрано устройство для контроля напряжения. Микросхема работает следующим образом. При номинальном напряжении, микросхема DA1 закрыта и находится в дежурном состоянии ожидания. При уменьшении напряжения на выводе 1, подключенном к контролируемой цепи (в данном случае - источник питания), до определенного значения, вывод 3 (внутри микросхемы) соединяется с выводом 2, подключенным к общему проводу.

Приведенная выше схема имеет различные варианты включения.

Вариант 1. Если к выводу 3 (точка А) подключить индикаторный светодиод (LED1 – R3) соединенный с положительным проводом (см. принципиальную схему), получим индикацию предельного разряда аккумулятора. При снижении напряжения питания до определенного значения (в нашем случае 12 В) светодиод LED1 включится, сигнализируя о необходимости заряда аккумулятора.

Вариант 2. Если точку А соединить с точкой Б, то при достижении низкого напряжения (12 В) на аккумуляторе, получим автоматическое отключение светодиодной матрицы от питания. Детектор напряжения, микросхема DA1, при достижении контрольного напряжения, соединит базу транзистора VT2 с общим проводом и закроет транзистор, отключив светодиодную матрицу. При повторном включении фонаря на низком напряжении (менее 12 В), светодиоды матрицы загораются на пару секунд (за счет заряд/разряд С1) и вновь гаснут, сигнализируя о разряде аккумулятора.

Вариант 3. При объединении вариантов 2 и 3, при отключении светодиодной матрицы включится индикаторный светодиод LED1.
Основные достоинства схем на детекторе напряжения, простота схемного подключения (практически не требуется дополнительных деталей обвязки) и чрезвычайно низкое энергопотребление (доли микроампера) в дежурном состоянии (в режиме ожидания).

2. Собираем схему драйвера на монтажной плате.
Выполняем монтаж VT1, VT2, R4. Подключаем, в качестве нагрузки, светодиодную матрицу, рассмотренную в начале статьи. В цепь питания светодиодов включаем миллиамперметр. С целью возможности проверки и настройки схемы на стабильном и определенной величины напряжении, подключаем ее к регулируемому источнику питания. Подбираем сопротивление резистора R5, позволяющее стабилизировать ток через светодиоды во всем диапазоне планируемой регулировки (с 12 до 17 В). С целью повышения КПД, первоначально был установлен резистор R5 номиналом 3,9 ома (см. фото), но стабилизация тока во всем диапазоне (при фактически установленных деталях) потребовала установки номинала в 20 ом, так как не хватало напряжения для регулировки VT1 из-за малого тока потребления светодиодной матрицы.

Транзистор VT1 желательно подобрать с большим коэффициентом передачи тока базы. Транзистор VT2 должен обеспечить допустимый ток коллектора, превышающий ток светодиодной матрицы и рабочее напряжение.

3. Добавляем на монтажную плату схему индикатора - ограничителя предельного разряда. Микросхемы детектора напряжения выпускаются на различные значения контроля напряжения. В нашем случае, в связи с отсутствием микросхемы на 12 В, использовал имеющуюся в наличии, на 4,5 В (часто встречаются в отработавшей бытовой технике – телевизоры, видеомагнитофоны). По этой причине, для контроля напряжения в 12 В, добавляем в схему делитель напряжения на постоянном резисторе R1 и переменном R2, необходимом для точной настройки на нужное значение. В нашем случае, регулировкой R2, добиваемся напряжения 4,5 В на выводе 1 DA1 при напряжении 12,1…12,3 В на шине питания. Аналогично, при подборе делителя напряжения, можно использовать и другие подобные микросхемы - детекторы напряжения, различных фирм, наименований и контрольных напряжений.

Первоначально проверяем и настраиваем схему на срабатывание, по светодиодному индикатору. Затем проверяем работу схемы, соединив точки А и Б, на отключение светодиодной матрицы. Останавливаемся на выбранном варианте (1, 2, 3).

Долго пылился на полке старый фонарик - ручка «Duracell». Работал он от двух батареек формата ААА, на лампочку накаливания. Очень удобен был, когда нужно посветить в какую-либо узкую щель в корпусе электронного прибора, но всё удобство от применения перечеркивал «жор» батареек. Можно было бы выкинуть этот раритет и поискать в магазинах что-то современнее, но… Это не наш метод... © Потому на Али была куплена микросхема светодиодного драйвера, которая помогла перевести фонарик на светодиодный свет. Переделка очень простая, которую сможет осилить, даже начинающий радиолюбитель, умеющий держать в руках паяльник… Так что, кому интересно, велком под Кат…

Микросхема драйвер покупалась давно, больше года назад, и ссылка на магазин уже ведет в «пустоту», потому я нашел аналогичный товар, у другого продавца. Сейчас этот драйвер стоит дешевле, чем я покупал его. Что же это за «клоп» с тремя ножками, давайте рассмотрим подробнее.
Для начала ссылка на даташит:
Микросхема представляет собой Led драйвер способный работать от низкого напряжения, к примеру, одной батарейки 1.5В формата ААА. Микросхема драйвера имеет высокую эффективность (КПД) 85% и способна «высосать» батарейку практически полностью, до остаточного напряжения 0,8В.
Характеристики микросхемы драйвера

под спойлером


Схема драйвера очень проста…


Как вы видите, кроме этой микросхемы «клопа» нужна всего одна деталь - дроссель (индуктор), и именно индуктивностью дросселя задается ток светодиода.
Для фонарика в место лампочки, я подобрал яркий белый светодиод, потребляющий ток 30мА, соответственно мне нужно было намотать дроссель индуктивностью 10мкГн. Эффективность драйвера составляет 75-92% в диапазоне 0.8-1.5В, что очень неплохо.

Приводить здесь чертеж печатной платы не буду, т.к нет смысла, плату можно изготовить за пару минут, просто процарапав фольгу в нужных местах.


Дроссель можно намотать, или взять готовый. Я намотал на гантельке, которая попалась под руку. При самостоятельном изготовлении необходимо контролировать индуктивность при помощи LC метра. В качестве корпуса для платы драйвера был использовать двух кубовый одноразовый шприц, внутри которого вполне достаточно места, что бы разместить все необходимые компоненты. С одной стороны шприца -резиновая пробка с светодиодом и контактной площадкой, с другой стороны вторая контактная площадка. Размер отрезка шприца подбирается по месту и приблизительно равен размеру батарейки ААА (мизиньчиковой, как её называют в народе)


Собственно собираем фонарик


И видим, что светодиод ярко светит от одной батарейки…


Ручка-фонарик в сборе выглядит вот так


Светит хорошо и вес фонарика стал меньше, потому как используется всего одна батарейка, а не две, как было изначально…

Вот такой получился коротенький обзор… При помощи микросхемы драйвера, вы можете переделать почти любой раритетный фонарик, на питание от одной батарейки 1.5В. Если есть вопросы спрашивайте…

Планирую купить +74 Добавить в избранное Обзор понравился +99 +185

Давно присматривался к этим микросхемам. Очень часто что-нибудь паяю. Решил взять их для творчества. Эти микросхемы куплены ещё в прошлом году. Но до применения их в деле так и не доходило. Но не так давно моя мать дала мне на починку свой фонарик, купленный в офлайне. На нём и потренировался.
В заказе было 10 микросхем, 10 и пришло.


Оплатил 17 ноября, получил 19 декабря. Пришли в стандартном пупырчатом пакетике. Внутри ещё пакетик. Шли без трека. Был удивлён, когда обнаружил их в почтовом ящике. Даже на почту идти не пришлось.


Не ожидал, что они настолько маленькие.

Микросхемы заказывал для других целей. Планами делиться не буду. Надеюсь, что у меня найдётся время воплотить их в жизнь (планы). Ну а пока немного другая история, приближенная к жизни.
Моя маман, гуляя по магазинам, увидела фонарик с хорошей скидкой. Что больше ей понравилось фонарик или скидка, история умалчивает. Этот фонарик вскоре стал и моей головной болью. Попользовалась она им не более полугода. Полгода проблемы, то одно, то другое. Я купил ей на место этого штуки три других. Но делать всё равно пришлось.


Фонарик хоть из недорогих, но имеет ряд существенных достоинств: в руке лежит удобно, достаточно яркий и кнопочка в привычном месте, алюминиевый корпус.
Ну а теперь о недостатках.
Питается фонарик от четырёх пальчиковых элементов типа ААА.


Поставил батарейки все четыре штуки. Измерил ток потребления – более 1А! Схема простая. Элементы питания, кнопка, ограничительный резистор на 1,0 Ом, светодиод. Всё последовательно. Ток ограничивается только сопротивлением 1,0 Ом и внутренним сопротивлением элементов питания.
Вот, что имеем в итоге.


Странно, что безымянный светодиод оказался живым.


Первым, что сделал – изготовил пустышку из старой батарейки.


Теперь будет питаться от 4,5В, как все китайские фонарики в основной своей массе.
И самое основное, вместо сопротивления поставлю драйвер AMC7135.
Вот стандартная схема его подключения.

Для этой микросхемы требуется минимум обвязки. Из дополнительных компонентов желательно установить пару керамических конденсаторов, что бы не было самовозбуждения микросхемы, особенно если к светодиоду идут длинные провода. В даташите есть вся необходимая информация. В фонарике длинных проводов нет, поэтому конденсаторов я в реальности не ставил, хотя в схеме обозначил. Вот моя схема, переработанная под конкретные задачи.


В данной схеме через кнопку-выключатель большой ток больше не будет течь в принципе. Через кнопку протекает только ток управления и всё. Ещё одной проблемой меньше.


Кнопку я тоже перебрал и смазал на всякий случай.

Вместо сопротивления теперь стоит микросхема с током стабилизации 360мА.


Всё собрал на место и измерил ток. Подключал и батарейки и аккумуляторы, картина не меняется. Ток стабилизации не меняется.


Слева – напряжение на светодиоде, справа – ток, через него протекающий.
Что же я добился в результате всех переделок?
1. Яркость фонаря практически не меняется при эксплуатации.
2. Разгрузил кнопку включения-выключения фонаря. Теперь через неё протекает мизерный ток. Порча контактов из-за большого тока исключена.
3. Защитил светодиод от деградации из-за большого протекающего тока (если с новыми батарейками).
Вот, в общем, и всё.
Как правильно распорядиться сведениями из моего обзора каждый решает сам. Я же могу гарантировать правдивость своих измерений. Кому что-то неясно по поводу этого обзора, задавайте вопросы. С остальным – кидайте в личку, обязательно отвечу.
На этом ВСЁ!
Удачи!

И ещё хотел бы обратить внимание на тот факт, что у моего фонарика выключатель стоит на плюсе. У многих китайских фонариков выключатель стоит на минусе, а это будет уже другая схема!

Планирую купить +60 Добавить в избранное Обзор понравился +58 +118
Загрузка...
Top