Как определить напряжение лэп. Кабельные линии электропередачи Высоковольтные линии электропередач напряжение

Содержание:

Один из столпов современной цивилизации – это электроснабжение. Ключевую роль в нем выполняют линии электропередачи – ЛЭП. Независимо от удаленности генерирующих мощностей от конечных потребителей, нужны протяженные проводники, которые их соединяют. Далее расскажем более детально о том, что из себя представляют эти проводники, именуемые как ЛЭП.

Какими бывают воздушные ЛЭП

Провода, прикрепленные к опорам, – это и есть воздушные ЛЭП. Сегодня освоены два способа передачи электроэнергии на большие расстояния. Они основаны на переменном и постоянном напряжениях. Передача электроэнергии при постоянном напряжении пока еще менее распространена в сравнении с переменным напряжением. Это объясняется тем, что постоянный ток сам по себе не генерируется, а получается из переменного тока.

По этой причине необходимы дополнительные электрические машины. А они стали появляться относительно недавно, поскольку в их основе используются мощные полупроводниковые приборы. Такие полупроводники появились лишь 20–30 лет тому назад, то есть примерно в 90-е годы ХХ века. Следовательно, до этого времени уже были построены в большом количестве ЛЭП переменного тока. Отличия линий электропередачи показаны далее на схематическом изображении.

Наибольшие потери вызывает активное сопротивление материала проводов. При этом не имеет значения, какой ток – постоянный или переменный. Для их преодоления напряжение в начале передачи повышается как можно больше. Уже преодолен уровень в один миллион вольт. Генератор Г питает ЛЭП переменного тока через трансформатор Т1. А в конце передачи напряжение понижается. ЛЭП питает нагрузку Н через трансформатор Т2. Трансформатор является самым простым и надежным инструментом преобразования напряжений.

У читателя, мало знакомого с электроснабжением, скорее всего, появится вопрос о смысле передачи электроэнергии на постоянном токе. А причины чисто экономические – передача электроэнергии на постоянном токе именно в самой ЛЭП дает большую экономию:

  1. Генератор вырабатывает трехфазное напряжение. Следовательно, три провода для электроснабжения на переменном токе нужны всегда. А на постоянном токе всю мощность трех фаз можно передать по двум проводам. А при использовании земли как проводника – по одному проводу. Следовательно, экономия лишь на материалах получается трехкратной в пользу ЛЭП на постоянном токе.
  2. Электрические сети переменного тока при объединении в одну общую систему должны иметь одинаковую фазировку (синхронизацию). Это значит, что мгновенное значение напряжения в соединяемых электросетях должно быть одинаковым. Иначе между соединяемыми фазами электросетей будет разность потенциалов. Как следствие соединения без фазировки – авария, сопоставимая с коротким замыканием. Для электросетей постоянного тока вообще не характерна. Для них имеет значение лишь действующее напряжение на момент соединения.
  3. Для электрических цепей, работающих на переменном токе, характерен импеданс, который связан с индуктивностью и емкостью. Импеданс имеется также и у ЛЭП переменного тока. Чем протяженнее линия, тем больше импеданс и потери, с ним связанные. Для электрических цепей постоянного тока понятия импеданса не существует, как и потерь, связанных с изменением направления движения электрического тока.
  4. Как уже упоминалось в п. 2, для стабильности в энергосистеме нужна синхронизация генераторов. Но чем больше система, работающая на переменном токе, и, соответственно, число электрогенераторов, тем сложнее их синхронизировать. А для энергосистем постоянного тока любое число генераторов будет нормально работать.

Из-за того, что сегодня нет достаточно мощных полупроводниковых или иных систем для преобразования напряжения, достаточно эффективного и надежного, большинство ЛЭП по-прежнему работает на переменном токе. По этой причине далее остановимся только на них.

Еще один пункт в классификации линий электропередачи – это их назначение. В связи с этим линии разделяются на

  • сверхдальние,
  • магистральные,
  • распределительные.

Их конструкция принципиально отличается из-за разных величин напряжения. Так, в сверхдальних ЛЭП, являющихся системообразующими, применяются самые высокие напряжения, которые только существуют на нынешнем этапе развития техники. Величина в 500 кВ для них является минимальной. Это объясняется значительным удалением друг от друга мощных электростанций, каждая из которых – это основа отдельной энергосистемы.

Внутри нее существует своя распределительная сеть, задача которой – обеспечение больших групп конечных потребителей. Они присоединены к распределительным подстанциям с напряжением 220 или 330 кВ на высокой стороне. Эти подстанции являются конечными потребителями для магистральных ЛЭП. Поскольку энергетический поток уже вплотную приблизился к поселениям, напряжение необходимо уменьшить.

Распределение электроэнергии выполняют ЛЭП, напряжение которых 20 и 35 кВ для жилого сектора, а также 110 и 150 кВ – для мощных промышленных объектов. Следующий пункт классификации линий электропередачи – по классу напряжения. По этому признаку ЛЭП можно опознать визуально. Для каждого класса напряжения характерны соответствующие изоляторы. Их конструкция – это своего рода удостоверение линии электропередачи. Изоляторы изготавливаются увеличением числа керамических чашек соответственно увеличению напряжения. А его классы в киловольтах (включая напряжения между фазами, принятые для стран СНГ) такие:

  • 1 (380 В);
  • 35 (6, 10, 20);
  • 110…220;
  • 330…750 (500);
  • 750 (1150).

Помимо изоляторов, отличительными признаками являются провода. С увеличением напряжения все больше проявляется эффект электрического коронного разряда. Это явление отбирает энергию и уменьшает эффективность электроснабжения. Поэтому для ослабления коронного разряда с увеличением напряжения, начиная с 220 кВ, используются параллельные провода – по одному на каждые примерно 100 кВ. Некоторые из воздушных линий (ВЛ) разных классов напряжения показаны далее на изображениях:

Опоры ЛЭП и другие заметные элементы

Для того чтобы провод надежно удерживался, применяются опоры. В простейшем случае это деревянные столбы. Но такая конструкция применима лишь к линиям до 35 кВ. А с увеличением ценности древесины в этом классе напряжений все больше используются опоры из железобетона. По мере увеличения напряжения провода необходимо поднимать выше, а расстояние между фазами делать больше. В сравнении опоры выглядят так:

В общем, опоры – это отдельная тема, которая довольно-таки обширна. По этой причине в детали темы опор линий электропередачи здесь углубляться не будем. Но чтобы кратко и емко показать читателю ее основу, продемонстрируем изображение:

В заключение информации о воздушных ЛЭП упомянем те дополнительные элементы, которые встречаются на опорах и хорошо заметны. Это

  • системы защиты от молнии,
  • а также реакторы.

Кроме перечисленных элементов, в линиях электропередачи применяется еще несколько. Но оставим их за рамками статьи и перейдем к кабелям.

Кабельные линии

Воздух – это изолятор. На этом его свойстве основаны воздушные линии. Но существуют и другие более эффективные материалы-изоляторы. Их применение позволяет намного уменьшить расстояния между фазными проводниками. Но цена такого кабеля получается настолько велика, что не может быть и речи о его использовании вместо воздушных ЛЭП. По этой причине кабели прокладывают там, где есть трудности с воздушными линиями.

Воздушные линии (ВЛ) служат для передачи электроэнергии по проводам, проложенным на открытом воздухе и закрепленным на специальных опорах или кронштейнах инженерных сооружений с помощью изоляторов и арматуры. Основными конструктивными элементами ВЛ являются провода, защитные тросы, опоры, изоляторы и линейная арматура. В городских условиях ВЛ получили наибольшее распространение на окраинах, а также в районах застройки до пяти этажей. Элементы ВЛ должны обладать достаточной механической прочностью, поэтому при их проектировании, кроме электрических, делают и механические расчеты для определения не только материала и сечения проводов, но и типа изоляторов и опор, расстояния между проводами и опорами и т. д.

В зависимости от назначения и места установки различают следующие виды опор:

промежуточные, предназначенные для поддержания проводов на прямых участках линий. Расстояние между опорами (пролеты) составляет 35-45 м для напряжения до 1000 В и около 60 м для напряжения 6-10 кВ. Крепление проводов здесь производится с помощью штыревых изоляторов (не наглухо);

анкерные, имеющие более жесткую и прочную конструкцию, чтобы воспринимать продольные усилия от разности тяжения по проводам и поддерживать (в случае обрыва) все оставшиеся в анкерном пролете провода. Эти опоры устанавливаются также на прямых участках трассы (с пролетом около 250 м для напряжения 6-10 кВ) и на пересечениях с различными сооружениями. Крепление проводов на анкерных опорах производится наглухо к подвесным или штыревым изоляторам;

концевые, устанавливаемые в начале и в конце линии. Они являются разновидностью анкерных опор и должны выдерживать постоянно действующее одностороннее тяжение проводов;

угловые, устанавливаемые в местах изменения направления трассы. Эти опоры укрепляются подкосами или металлическими оттяжками;

специальные или переходные, устанавливаемые в местах пересечений ВЛ с сооружениями или препятствиями (реками, железными дорогами и т. п.). Они отличаются от других опор данной линии по высоте или конструкции.

Для изготовления опор применяют дерево, металл или железобетон.

Деревянные опоры в зависимости от конструкции могут быть:

одинарными;

А-образными, состоящими из двух стоек, сходящихся у вершины и расходящихся у основания;

трехногими, состоящими из трех сходящихся к вершине и расходящихся у основания стоек;

П-образными, состоящими из двух стоек, соединенных вверху горизонтальной траверсой;

АП-образными, состоящими из двух А-образных опор, соединенных горизонтальной траверсой;

составными, состоящими из стойки и приставки (пасынка), присоединяемой к ней бандажом из стальной проволоки.

Для увеличения срока службы деревянные опоры пропитывают антисептиками, значительно замедляющими процесс гниения древесины. В эксплуатации антисептирование проводится путем наложения антисептического бандажа в местах, подверженных гниению, с промазыванием антисептической пастой всех трещин, мест сопряжений и врубок.

Металлические опоры изготавливают из труб или профильной стали, железобетонные - в виде полых круглых или прямоугольных стоек с уменьшающимся сечением к вершине опоры.

Для крепления проводов ВЛ к опорам применяются изоляторы и крюки, а для крепления к траверсе - изоляторы и штыри. Изоляторы могут быть фарфоровыми или стеклянными штыревого или подвесного (в местах анкерного крепления) исполнения (рис. 1, а-в). Их прочно навертывают на крюки или штыри с помощью специальных полиэтиленовых колпачков или пакли, пропитанной суриком или олифой.

Рисунок 1. а - штыревой 6-10 кВ; б - штыревой 35 кВ; в - подвесной; г, д - стержневые полимерные

Изоляторы воздушных линий изготавливаются из фарфора или закаленного стекла - материалов, обладающих высокой механической и электрической прочностью и стойкостью к атмосферным воздействиям. Существенным достоинством стеклянных изоляторов является то, что при повреждении закаленное стекло рассылается. Это облегчает нахождение поврежденных изоляторов на линии.

По конструкции изоляторы разделяют на штыревые и подвесные.

Штыревые изоляторы применяются на линиях напряжением до 1 кВ, 6-10 кВ и, редко, 35 кВ (рис. 1, а, б). Они крепятся к опорам при помощи крюков или штырей.

Подвесные изоляторы (рис. 1, в) используются на ВЛ напряжением 35 кВ и выше. Они состоят из фарфоровой или стеклянной изолирующей части 1, шапки из ковкого чугуна 2, металлического стержня 3 и цементной связки 4. Подвесные изоляторы собирают в гирлянды, которые бывают поддерживающими (на промежуточных опорах) и натяжными (на анкерных опорах). Число изоляторов в гирлянде определяется напряжением линии; 35 кВ - 3-4 изолятора, 110 кВ - 6-8.

Применяются также полимерные изоляторы (рис. 1, г). Они представляют собой стержневой элемент из стеклопластика, на котором размещено защитное покрытие с ребрами из фторопласта или кремнийорганической резины:

К проводам ВЛ предъявляются требования достаточной механической прочности. Они могут быть одно- или многопроволочными. Однопроволочные провода из стали применяются исключительно для линий напряжением до 1000 В; многопроволочные провода из стали, биметалла, алюминия и его сплавов получили преимущественное распространение благодаря повышенной механической прочности и гибкости. Чаще всего на ВЛ напряжением до 6-10 кВ используются алюминиевые многопроволочные провода марки А и стальные оцинкованные провода марки ПС.

Сталеалюминевые провода (рис. 2, в) применяют на ВЛ напряжением выше 1 кВ. Они выпускаются с разным соотношением сечений алюминиевой и стальной частей. Чем меньше это соотношение, тем более высокую механическую прочность имеет провод и поэтому используется на территориях с более тяжелыми климатическими условиями (с большей толщиной стенки гололеда). В марке сталеалюминевых проводов указываются сечения алюминиевой и стальной частей, например, АС 95/16.

Рисунок 2. а - общий вид многопроволочного провода; б - сечение алюминиевого провода; в - сечение сталеалюминевого провода

Провода из сплавов алюминия (АН - не термообработанный, АЖ - термообработанный) имеют большую, по сравнению с алюминиевыми, механическую прочность и практически такую же электрическую проводимость. Они используются на ВЛ напряжением выше 1 кВ в районах с толщиной стенки гололеда до 20 мм.

Провода располагают различными способами. На одноцепных линиях их, как правило, располагают треугольником.

В настоящее время широко используются так называемые самонесущие изолированные провода (СИП) напряжением до 10 кВ. В линии напряжением 380 В провода состоят из несущего неизолированного провода, являющегося нулевым, трех изолированных линейных проводов, одного изолированного провода наружного освещения. Линейные изолированные провода навиты вокруг несущего нулевого провода. Несущий провод является сталеалюминевым, а линейные - алюминиевыми. Последние покрыты светостойким термостабилизированным (сшитым) полиэтиленом (провод типа АПВ). К преимуществам ВЛ с изолированными проводами перед линиями с голыми проводами можно отнести отсутствие изоляторов на опорах, максимальное использование высоты опоры для подвески проводов; нет необходимости в обрезке деревьев в зоне прохождения линии.

Для ответвлений от линий напряжением до 1000 В к вводам в здания используются изолированные провода марки АПР или АВТ. Они имеют несущий стальной трос и изоляцию, стойкую к атмосферным воздействиям.

Крепление проводов к опорам производится различными способами, в зависимости от места их расположения на изоляторе. На промежуточных опорах провода крепят к штыревым изоляторам зажимами или вязальной проволокой из того же материала, что и провод, причем последний в месте крепления не должен иметь изгибов. Провода, расположенные на головке изолятора, крепятся головной вязкой, на шейке изолятора - боковой вязкой.

На анкерных, угловых и концевых опорах провода напряжением до 1000 В крепят закручиванием проводов так называемой «заглушкой», провода напряжением 6-10 кВ - петлей. На анкерных и угловых опорах, в местах перехода через железные дороги, проезды, трамвайные пути и на пересечениях с различными силовыми линиями и линиями связи применяют двойной подвес проводов.

Соединение проводов производят плашечными зажимами, обжатым овальным соединителем, овальным соединителем, скрученным специальным приспособлением. В некоторых случаях применяют сварку с помощью термитных патронов и специального аппарата. Для однопроволочных стальных проводов можно применять сварку внахлестку с использованием небольших трансформаторов. В пролетах между опорами не допускается иметь более двух соединений проводов, а в пролетах пересечений ВЛ с различными сооружениями соединение проводов не допускается. На опорах соединение должно быть выполнено так, чтобы оно не испытывало механических усилий.

Линейная арматура применяется для крепления проводов к изоляторам и изоляторов к опорам и делится на следующие основные виды: зажимы, сцепная арматура, соединители и др.

Зажимы служат для закрепления проводов и тросов и прикрепления их к гирляндам изоляторов и подразделяются на поддерживающие, подвешиваемые на промежуточных опорах, и натяжные, применяемые на опорах анкерного типа (рис. 3, а, б, в).

Рисунок 3. а - поддерживающий зажим; б - болтовой натяжной зажим; в - прессуемый натяжной зажим; г - поддерживающая гирлянда изоляторов; д - дистанционная распорка; е - овальный соединитель; ж - прессуемый соединитель

Сцепная арматура предназначена для подвески гирлянд на опорах и соединения многоцепных гирлянд друг с другом и включает скобы, серьги, ушки, коромысла. Скоба служит для присоединения гирлянды к траверсе опоры. Поддерживающая гирлянда (рис. 3, г) закрепляется на траверсе промежуточной опоры при помощи серьги 1, которая другой стороной вставляется в шапку верхнего подвесного изолятора 2. Ушко 3 используется для прикрепления к нижнему изолятору гирлянды поддерживающего зажима 4.

Соединители применяются для соединения отдельных участков провода. Они бывают овальные и прессуемые. В овальных соединителях провода либо обжимаются, либо скручиваются (рис. 3, е). Прессуемые соединители (рис. 3, ж) применяются для соединения проводов больших сечений. В сталеалюминевых проводах стальная и алюминиевая части опрессовываются раздельно.

Тросы наряду с искровыми промежутками, разрядниками и устройствами заземления служат для защиты линий от грозовых перенапряжений. Их подвешивают над фазными проводами на ВЛ напряжением 35 кВ и выше, в зависимости от района по грозовой деятельности и материала опор, что регламентируется «Правилами устройства электроустановок». Грозозащитные тросы обычно выполняют из стали, но при использовании их в качестве высокочастотных каналов связи - из стали и алюминия. На линиях 35-110 кВ крепление троса к металлическим и железобетонным промежуточным опорам осуществляется без изоляции троса.

Для защиты от грозовых перенапряжений участков ВЛ с пониженным по сравнению с остальной линией уровнем изоляции применяют трубчатые разрядники.

На ВЛ заземляются все металлические и железобетонные опоры, на которых подвешены грозозащитные тросы или установлены другие средства грозозащиты (разрядники, искровые промежутки) линий напряжением 6-35 кВ. На линиях до 1 кВ с глухозаземленной нейтралью крюки и штыри фазных проводов, устанавливаемые на железобетонных опорах, а также арматура этих опор должны быть присоединены к нулевому проводу.

Как можно обозначит значение линий электропередач? Есть ли точное определение проводам, по которым передается электроэнергия? В межотраслевых правилах технической эксплуатации электроустановок потребителей есть точное определение. Итак, ЛЭП – это, во-первых, электрическая линия. Во-вторых, это участки проводов, которые выходят за пределы подстанций и электрических станций. В-третьих, основное назначение линий электропередач – это передача электрического тока на расстоянии.

По тем же правилам МПТЭЭП производится разделение ЛЭП на воздушные и кабельные. Но необходимо отметить, что по линиям электропередач производится также передача высокочастотных сигналов, которые используются для передачи телеметрических данных, для диспетчерского управления различными отраслями, для сигналов противоаварийной автоматики и релейной защиты. Как утверждает статистика, 60000 высокочастотных каналов сегодня проходят по линиям электропередач. Скажем прямо, показатель значительный.

Воздушные ЛЭП

Воздушные линии электропередач, их обычно обозначают буквами «ВЛ» – это устройства, которые располагаются на открытом воздухе. То есть, сами провода прокладываются по воздуху и закрепляются на специальной арматуре (кронштейны, изоляторы). При этом их установка может проводиться и по столбам, и по мостам, и по путепроводам. Не обязательно считать «ВЛ» те линии, которые проложены только по высоковольтным столбам.

Что входит в состав воздушных линий электропередач:

  • Основное – это провода.
  • Траверсы, с помощью которых создаются условия невозможности соприкосновения проводов с другими элементами опор.
  • Изоляторы.
  • Сами опоры.
  • Контур заземления.
  • Молниеотводчики.
  • Разрядники.

То есть, линия электропередач – это не просто провода и опоры, как видите, это достаточно внушительный список различных элементов, каждый из которых несет свои определенные нагрузки. Сюда же можно добавить оптоволоконные кабели, и вспомогательное к ним оборудование. Конечно, если по опорам ЛЭП проводятся высокочастотные каналы связи.

Строительство ЛЭП, а также ее проектирование, плюс конструктивные особенности опор определяются правилами устройства электроустановок, то есть ПУЭ, а также различными строительными правилами и нормами, то есть СНиП. Вообще, строительство линий электропередач – дело непростое и очень ответственное. Поэтому их возведением занимаются специализированные организации и компании, где в штате есть высококвалифицированные специалисты.

Классификация воздушных линий электропередач

Сами воздушные высоковольтные линии электропередач делятся на несколько классов.

По роду тока:

  • Переменного,
  • Постоянного.

В основе своей воздушные ВЛ служат для передачи переменного тока. Редко можно встретить второй вариант. Обычно он используется для питания сети контактной или связной для обеспечения связью несколько энергосистем, есть и другие виды.

По напряжению воздушные ЛЭП делятся по номиналу этого показателя. Для информации перечислим их:

  • для переменного тока: 0,4; 6; 10; 35; 110; 150; 220; 330; 400; 500; 750; 1150 киловольт (кВ);
  • для постоянного используется всего один вид напряжение – 400 кВ.

При этом линии электропередач напряжением до 1,0 кВ считаются низшего класса, от 1,0 до 35 кВ – среднего, от 110 до 220 кВ – высокого, от 330 до 500 кВ – сверхвысокого, выше 750 кВ ультравысокого. Необходимо отметить, что все эти группы отличаются друг от друга лишь требованиями к расчетным условиям и конструктивным особенностям. Во всем остальном – это обычные высоковольтные линии электропередач.


Напряжение ЛЭП соответствует их назначению.

  • Высоковольтная линия напряжением свыше 500 кВ считаются сверхдальними, они предназначаются для соединения отдельных энергосистем.
  • Высоковольтная линия напряжением 220, 330 кВ считаются магистральными. Их основное назначение – соединить между собой мощные электростанции, отдельные энергосистемы, а также электростанции внутри данных систем.
  • Воздушные ЛЭП напряжением 35-150 кВ устанавливаются между потребителями (большими предприятиями или населенными пунктами) и распределительными пунктами.
  • ВЛ до 20 кВ используются в качестве линий электропередач, которые непосредственно подводят электрический ток к потребителю.

Классификация ЛЭП по нейтрале

  • Трехфазные сети, в которых нейтраль не заземлена. Обычно такая схема используется в сетях напряжением 3-35 кВ, где протекают малые токи.
  • Трехфазные сети, в которых нейтраль заземлена через индуктивность. Это так называемый резонансно-заземленный тип. В таких ВЛ используется напряжение 3-35 кВ, в которых протекают токи большой величины.
  • Трехфазные сети, в которых нейтральная шина полностью заземлена (эффективно-заземленная). Этот режим работы нейтрали используется в ВЛ со средним и сверхвысоким напряжением. Обратите внимание, что в таких сетях необходимо использовать трансформаторы, а не автотрансформаторы, в которых нейтраль заземлена наглухо.
  • И, конечно, сети с глухозаземленной нейтралью. В таком режиме работают ВЛ напряжением ниже 1,0 кВ и выше 220 кВ.

К сожалению, существует и такое разделения линий электропередач, где учитывается эксплуатационное состояние всех элементов ЛЭП. Это ЛЭП в нормальном состоянии, где провода, опоры и другие составляющие находятся в приличном состоянии. В основном упор делается на качество проводов и тросов, они не должны быть оборваны. Аварийное состояние, где качество проводов и тросов оставляет желать лучшего. И монтажное состояние, когда производится ремонт или замена проводов, изоляторов, кронштейнов и других компонентов ЛЭП.


Элементы воздушной ЛЭП

Между специалистами всегда происходят разговоры, в которых применяются специальные термины, касающиеся линий электропередач. Непосвященному в тонкости сленга понять этот разговор достаточно сложно. Поэтому предлагаем расшифровку этих терминов.

  • Трасса – это ось прокладки ЛЭП, которая проходит по поверхности земли.
  • ПК – пикеты. По сути, это отрезки трассы ЛЭП. Их длина зависит от рельефа местности и от номинального напряжения трассы. Нулевой пикет – это начало трассы.
  • Строительство опоры обозначается центровым знаком. Это центр установки опоры.
  • Пикетаж – по сути, это простая установка пикетов.
  • Пролет – это расстояние между опорами, а точнее, между их центрами.
  • Стрела провеса – это дельта между самой низшей точкой провеса провода и строго натянутой линией между опорами.
  • Габарит провода – это опять-таки расстояние между самой низшей точкой провеса и самой высшей точкой пролегаемых под проводами инженерных сооружений.
  • Петля или шлейф. Это часть провода, которая соединяет на анкерной опоре провода соседних пролетов.

Кабельные ЛЭП

Итак, переходим к рассмотрению такого понятия, как кабельные линии электропередач. Начнем с того, что это не голые провода, которые используются в воздушных линиях электропередач, это закрытые в изоляцию кабели. Обычно кабельные ЛЭП представляют собой несколько линий, установленные рядом друг с другом в параллельном направлении. Длины кабеля для этого бывает недостаточно, поэтому между участками устанавливаются соединительные муфты. Кстати, нередко можно встретить кабельные линии электропередач с маслонаполнением, поэтому такие сети часто укомплектовываются специальной малонаполнительной аппаратурой и системой сигнализации, которая реагирует на давление масла внутри кабеля.

Если говорить о классификации кабельных линий, то они идентичны классификации линий воздушных. Отличительные особенности есть, но их не так много. В основном эти две категории отличаются между собой способом прокладки, а также конструктивными особенностями. К примеру, по типу прокладки кабельные ЛЭП делятся на подземные, подводные и по сооружениям.


Две первые позиции понятны, а что относится к позиции «по сооружениям»?

  • Кабельные туннели. Это специальные закрытые коридоры, в которых производится прокладка кабеля по установленным опорным конструкциям. В таких туннелях можно свободно ходить, проводя монтаж, ремонт и обслуживание электролинии.
  • Кабельные каналы. Чаще всего они являются заглубленными или частично заглубленными каналами. Их прокладка может производиться в земле, под напольным основанием, под перекрытиями. Это небольшие каналы, в которых ходить невозможно. Чтобы проверить или установить кабель, придется демонтировать перекрытие.
  • Кабельная шахта. Это вертикальный коридор с прямоугольным сечением. Шахта может быть проходной, то есть, с возможностью помещаться в нее человеку, для чего она снабжается лестницей. Или непроходной. В данном случае добраться до кабельной линии можно, только сняв одну из стенок сооружения.
  • Кабельный этаж. Это техническое пространство, обычно высотою 1,8 м, оснащенное снизу и сверху плитами перекрытия.
  • Укладывать кабельные линии электропередач можно и в зазор между плитами перекрытия и полом помещения.
  • Блок для кабеля – это сложное сооружение, состоящее из труб прокладки и нескольких колодцев.
  • Камера – это подземное сооружение, закрытое сверху железобетонной или плитой. В такой камере производится соединение муфтами участков кабельной ЛЭП.
  • Эстакада – это горизонтальное или наклонное сооружение открытого типа. Она может быть надземной или наземной, проходной или непроходной.
  • Галерея – это практически то же самое, что и эстакада, только закрытого типа.

И последняя классификация в кабельных ЛЭП – это тип изоляции. В принципе, основных видов два: твердая изоляция и жидкостная. К первой относятся изоляционные оплетки из полимеров (поливинилхлорид, сшитый полиэтилен, этилен-пропиленовая резина), а также другие виды, к примеру, промасленная бумага, резино-бумажная оплетка. К жидкостным изоляторам относится нефтяное масло. Есть и другие виды изоляции, к примеру, специальными газами или другими видами твердых материалов. Но их используют сегодня очень редко.

Заключение по теме

Разнообразие линий электропередач сводится к классификации двух основных видов: воздушных и кабельных. Оба варианта сегодня используются повсеместно, поэтому не стоит отделять один от другого и давать предпочтение одному перед другим. Конечно, строительство воздушных линий сопряжено с большими капиталовложениями, потому что прокладка трассы – это установка опор в основном металлических, которые имеют достаточно сложную конструкцию. При этом учитывается, какая сеть, под каким напряжением будет прокладываться.

Воздушные линии электропередачи различают по ряду критериев. Приведем общую классификацию.

I. По роду тока

Рисунок. ВЛ постоянного тока напряжением 800 кВ

В настоящее время передача электрической энергии осуществляется преимущественно на переменном токе. Это связано с тем, что подавляющее большинство источников электрической энергии вырабатывают переменное напряжение (исключением являются некоторые нетрадиционные источники электрической энергии, например, солнечные электростанции), а основными потребителями являются машины переменного тока.

В некоторых случаях передача электрической энергии на постоянном токе предпочтительнее. Схема организации передачи на постоянном токе приведена на рисунке ниже. Для уменьшения нагрузочных потерь в линии при передаче электроэнергии на постоянном токе, как и на переменном, с помощью трансформаторов увеличивают напряжение передачи. Кроме этого при организации передачи от источника к потребителю на постоянном токе необходимо преобразовать электрическую энергию из переменного тока в постоянный (с помощью выпрямителя) и обратно (с помощью инвертора).

Рисунок. Схемы организации передачи электрической энергии на переменном (а) и постоянном (б) токе: Г – генератор (источник энергии), Т1 – повышающий трансформатор, Т2 – понижающий трансформатор, В – выпрямитель, И – инвертор, Н – нагрузка (потребитель).

Преимущества передачи электроэнергии по ВЛ на постоянном токе следующие:

  1. Строительство воздушной линии дешевле, так как передачу электроэнергии на постоянном токе можно осуществлять по одному (монополярная схема) или двум (биполярная схема) проводам.
  2. Передачу электроэнергии можно осуществлять между несинхронизированными по частоте и фазе энергосистемами.
  3. При передаче больших объемов электроэнергии на большие расстояния потери в ЛЭП постоянного тока становятся меньше чем при передаче на переменном токе.
  4. Предел передаваемой мощности по условию устойчивости энергосистемы выше, чем у линий переменного тока.

Основной недостаток передачи электроэнергии на постоянном токе это необходимость применения преобразователей переменного тока в постоянный (выпрямителей) и обратно, постоянного в переменный (инверторов), и связанные с этим дополнительные капитальные затраты и дополнительные потери на преобразование электроэнергии.

ВЛ постоянного тока не получили в настоящее время широкого распространения, поэтому в дальнейшем мы будем рассматривать вопросы монтажа и эксплуатации ВЛ переменного тока.

II. По назначению

  • Сверхдальние ВЛ напряжением 500 кВ и выше (предназначены для связи отдельных энергосистем).
  • Магистральные ВЛ напряжением 220 и 330 кВ (предназначены для передачи энергии от мощных электростанций, а также для связи энергосистем и объединения электростанций внутри энергосистем - к примеру, соединяют электростанции с распределительными пунктами).
  • Распределительные ВЛ напряжением 35 и 110 кВ (предназначены для электроснабжения предприятий и населённых пунктов крупных районов - соединяют распределительные пункты с потребителями)
  • ВЛ 20 кВ и ниже, подводящие электроэнергию к потребителям.

III. По напряжению

  1. ВЛ до 1000 В (низковольтные ВЛ).
  2. ВЛ выше 1000 В (высоковольтные ВЛ):

Воздушные и кабельные линии электропередачи (ЛЭП)

Общие сведении и определения

В общем случае можно считать, что линия электропередачи (ЛЭП) это - электрическая линия, выходящая за пределы электростанции или подстанции и предназначенная для передачи электрической энергии на расстояние; она состоит из проводов и кабелей, изолирующих элементов и несущих конструкций.

Современная классификация ЛЭП по ряду признаков представлена в табл. 13.1.

Классификация линий электропередачи

Таблица 13.1

Признак

Тип линии

Разновидность

Род тока

Постоянного тока

Трехфазного переменного тока

Многофазного переменного тока

Шестифазная

Двенадцатифазная

Номинальное

напряжение

Низковольтная (до 1 кВ)

Высоковольтная (свыше 1 кВ)

СН (3-35 кВ)

ВН (110-220 кВ)

СВН (330-750 кВ)

УВН (свыше 1000 кВ)

Конструктивное

выполнение

Воздушная

Кабельная

Число цепей

Одноцепная

Двухцепная

Многоцепная

Топологические

характеристики

Радиальная

Магистральная

Ответвление

Функциональное

назначение

Распределительная

Питающая

Межсистсмная связь

В классификации на первом месте стоит род тока. В соответствии с этим признаком различаются линии постоянного тока, а также трехфазного и многофазного переменного тока.

Линии постоянного тока конкурируют с остальными лишь при достаточно большой протяженности и передаваемой мощности, поскольку в общей стоимости электропередачи значительную долю составляют затраты на сооружение концевых преобразовательных подстанций.

Наибольшее распространение в мире получили линии трехфазного переменного тока , причем по протяженности среди них лидируют именно воздушные линии. Линии многофазного переменного тока (шести- и двенадцатифазные) в настоящее время относятся к категории нетрадиционных.

Наиболее важным признаком, определяющим различие конструктивных и электрических характеристик ЛЭП, является номинальное напряжение U . К категории низковольтных относятся линии с номинальным напряжением менее 1 кВ. Линии с U hou > 1 кВ принадлежат к разряду высоковольтных , и среди них выделяются линии среднего напряжения (СН) с U iom = 3-35 кВ, высокого напряжения (ВН) с U nou = 110-220 кВ, сверхвысокого напряжения (СВН) U h(m = 330-750 кВ и ультравысокого напряжения (УВН) с U hou > 1000 кВ.

По конструктивному исполнению различают воздушные и кабельные линии. По определению воздушная линия - это линия электропередачи, провода которой поддерживаются над землей с помощью опор, изоляторов и арматуры. В свою очередь, кабельная линия определяется как линия электропередачи, выполненная одним или несколькими кабелями, уложенными непосредственно в землю или проложенными в кабельных сооружениях (коллекторах, туннелях, каналах, блоках и т.п.).

По количеству параллельных цепей (л ц), прокладываемых по общей трассе, различают одноцепные (п =1), двухцепные (и ц = 2) и многоцепные (и ц > 2) линии. По ГОСТ 24291-9Ь одноцепная воздушная линия переменного тока определяется как линия, имеющая один комплект фазных проводов, а двухцепная ВЛ - два комплекта. Соответственно многоцепной ВЛ называется линия, имеющая более двух комплектов фазных проводов. Эти комплекты могут иметь одинаковые или различные номинальные напряжения. В последнем случае линия называется комбинированной.

Одноцепные воздушные линии сооружаются на одноцепных опорах, тогда как двухцепные могут сооружаться либо с подвеской каждой цепи на отдельных опорах, либо с их подвеской на общей (двухцепной) опоре.

В последнем случае, очевидно, сокращается полоса отчуждения территории под трассу линии, но возрастают вертикальные габариты и масса опоры. Первое обстоятельство, как правило, является решающим, если линия проходит в густонаселенных районах, где обычно стоимость земли достаточно высока. По этой же причине в ряде стран мира используются и многоценные опоры с подвеской цепей одного номинального напряжения (обычно с и ц = 4) либо разных напряжений (с я ц

По топологическим (схемным) характеристикам различают радиальные и магистральные линии. Радиальной считается линия, в которую мощность поступает только с одной стороны, т.е. от единственного источника питания. Магистральная линия определяется ГОСТ как линия, от которой отходит несколько ответвлений. Под ответвлением понимается линия, присоединенная одним концом к другой ЛЭП в ее промежуточной точке.

Последний признак классификации - функциональное назначение. Здесь выделяются распределительные и питающие линии, а также линии межсистемной связи. Деление линий на распределительные и питающие достаточно условно, ибо и те, и другие служат для обеспечения электрической энергией пунктов потребления. Обычно к распределительным относят линии местных электрических сетей, а к питающим - линии сетей районного значения, которые осуществляют электроснабжение центров питания распределительных сетей. Линии межсистемной связи непосредственно соединяют разные энергосистемы и предназначены для взаимного обмена мощностью как в нормальных режимах, так и при авариях.

Процесс электрификации, создания и объединения энергосистем в Единую энергосистему сопровождался постепенным увеличением номинального напряжения ЛЭП с целью повышения их пропускной способности. В этом процессе на территории бывшего СССР исторически сложились две системы номинальных напряжений. Первая, наиболее распространенная, включает в себя следующий ряд значений U Hwt: 35-110-200-500- 1150 кВ, а вторая -35-150-330-750 кВ. К моменту распада СССР на территории России находилось в эксплуатации более 600 тыс. км ВЛ 35-1150 кВ. В последующий период рост протяженности продолжался, хотя и менее интенсивно. Соответствующие данные представлены в табл. 13.2.

Динамика изменения протяженности ВЛ за 1990-1999 гг.

Таблица 13.2

и , кВ

Протяженность ВЛ, тыс. км

1990 г.

1995 г.

1996 г.

1997 г.

1998 г.

1999 г.

Всего

Загрузка...
Top