Исчерпывающий гид (2019). Квадратный корень. Исчерпывающий гид (2019) Защита персональной информации

Урок и презентация на тему: "Свойства корня n-ой степени. Теоремы"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 11 класса
Интерактивное пособие для 9–11 классов "Тригонометрия"
Интерактивное пособие для 10–11 классов "Логарифмы"

Свойства корня n-ой степени. Теоремы

Ребята, мы продолжаем изучать корни n-ой степени из действительного числа. Как практически все математические объекты, корни n-ой степени обладают некоторыми свойствами, сегодня мы будем их изучать.
Все свойства, которые мы рассмотрим, формулируются и доказываются только для неотрицательных значений переменных, содержащихся под знаком корня.
В случае нечетного показателя корня они выполняются и для отрицательных переменных.

Теорема 1. Корень n-ой степени из произведения двух неотрицательных чисел равен произведению корней n-ой степени этих чисел: $\sqrt[n]{a*b}=\sqrt[n]{a}*\sqrt[n]{b}$ .

Давайте докажем теорему.
Доказательство. Ребята, для доказательства теоремы давайте введем новые переменные, обозначим:
$\sqrt[n]{a*b}=x$.
$\sqrt[n]{a}=y$.
$\sqrt[n]{b}=z$.
Нам надо доказать, что $x=y*z$.
Заметим, что выполняются и такие тождества:
$a*b=x^n$.
$a=y^n$.
$b=z^n$.
Тогда выполняется и такое тождество: $x^n=y^n*z^n=(y*z)^n$.
Степени двух неотрицательных чисел и их показатели равны, тогда и сами основания степеней равны. Значит $x=y*z$, что и требовалось доказать.

Теорема 2. Если $а≥0$, $b>0$ и n – натуральное число, которое большее 1, тогда выполняется следующее равенство: $\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}$ .

То есть корень n-ой степени частного равен частному корней n-ой степени.

Доказательство.
Для доказательства воспользуемся упрощенной схемой в виде таблицы:

Примеры вычисления корня n-ой степени

Пример.
Вычислить: $\sqrt{16*81*256}$.
Решение. Воспользуемся теоремой 1: $\sqrt{16*81*256}=\sqrt{16}*\sqrt{81}*\sqrt{256}=2*3*4=24$.

Пример.
Вычислить: $\sqrt{7\frac{19}{32}}$.
Решение. Представим подкоренное выражение в виде неправильной дроби: $7\frac{19}{32}=\frac{7*32+19}{32}=\frac{243}{32}$.
Воспользуемся теоремой 2: $\sqrt{\frac{243}{32}}=\frac{\sqrt{243}}{\sqrt{32}}=\frac{3}{2}=1\frac{1}{2}$.

Пример.
Вычислить:
а) $\sqrt{24}*\sqrt{54}$.
б) $\frac{\sqrt{256}}{\sqrt{4}}$.
Решение:
а) $\sqrt{24}*\sqrt{54}=\sqrt{24*54}=\sqrt{8*3*2*27}=\sqrt{16*81}=\sqrt{16}*\sqrt{81}=2*3=6$.
б) $\frac{\sqrt{256}}{\sqrt{4}}=\sqrt{\frac{256}{4}}=\sqrt{64}=24$.

Теорема 3. Если $a≥0$, k и n – натуральные числа больше 1, то справедливо равенство: $(\sqrt[n]{a})^k=\sqrt[n]{a^k}$.

Чтобы возвести корень в натуральную степень, достаточно возвести в эту степень подкоренное выражение.

Доказательство.
Давайте рассмотрим частный случай для $k=3$. Воспользуемся теоремой 1.
$(\sqrt[n]{a})^k=\sqrt[n]{a}*\sqrt[n]{a}*\sqrt[n]{a}=\sqrt[n]{a*a*a}=\sqrt[n]{a^3}$.
Так же можно доказать и для любого другого случая. Ребята, докажите сами для случая, когда $k=4$ и $k=6$.

Теорема 4. Если $a≥0$ b n,k – натуральные числа большие 1, то справедливо равенство: $\sqrt[n]{\sqrt[k]{a}}=\sqrt{a}$.

Чтобы извлечь корень из корня, достаточно перемножить показатели корней.

Доказательство.
Докажем опять кратко, используя таблицу. Для доказательства воспользуемся упрощенной схемой в виде таблицы:

Пример.
$\sqrt{\sqrt{a}}=\sqrt{a}$.
$\sqrt{\sqrt{a}}=\sqrt{a}$.
$\sqrt{\sqrt{a}}=\sqrt{a}$.

Теорема 5. Если показатели корня и подкоренного выражения умножить на одно и тоже натуральное число, то значение корня не изменится: $\sqrt{a^{kp}}=\sqrt[n]{a}$.

Доказательство.
Принцип доказательства нашей теоремы такой же, как и в других примерах. Введем новые переменные:
$\sqrt{a^{k*p}}=x=>a^{k*p}=x^{n*p}$ (по определению).
$\sqrt[n]{a^k}=y=>y^n=a^k$ (по определению).
Последнее равенство возведем в степень p
$(y^n)^p=y^{n*p}=(a^k)^p=a^{k*p}$.
Получили:
$y^{n*p}=a^{k*p}=x^{n*p}=>x=y$.
То есть $\sqrt{a^{k*p}}=\sqrt[n]{a^k}$, что и требовалось доказать.

Примеры:
$\sqrt{a^5}=\sqrt{a}$ (разделили показатели на 5).
$\sqrt{a^{22}}=\sqrt{a^{11}}$ (разделили показатели на 2).
$\sqrt{a^4}=\sqrt{a^{12}}$ (умножили показатели на 3).

Пример.
Выполнить действия: $\sqrt{a}*\sqrt{a}$.
Решение.
Показатели корней - это разные числа, поэтому мы не можем воспользоваться теоремой 1, но применив теорему 5, мы можем получить равные показатели.
$\sqrt{a}=\sqrt{a^3}$ (умножили показатели на 3).
$\sqrt{a}=\sqrt{a^4}$ (умножили показатели на 4).
$\sqrt{a}*\sqrt{a}=\sqrt{a^3}*\sqrt{a^4}=\sqrt{a^3*a^4}=\sqrt{a^7}$.

Задачи для самостоятельного решения

1. Вычислить: $\sqrt{32*243*1024}$.
2. Вычислить: $\sqrt{7\frac{58}{81}}$.
3. Вычислить:
а) $\sqrt{81}*\sqrt{72}$.
б) $\frac{\sqrt{1215}}{\sqrt{5}}$.
4. Упростить:
а) $\sqrt{\sqrt{a}}$.
б) $\sqrt{\sqrt{a}}$.
в) $\sqrt{\sqrt{a}}$.
5. Выполнить действия: $\sqrt{a^2}*\sqrt{a^4}$.

Чтобы успешно использовать на практике операцию извлечения корня, нужно познакомиться со свойствами этой операции.
Все свойства формулируются и доказываются только для неотрицательных значений переменных, содержащихся под знаками корней.

Теорема 1. Корень n-й степени (n=2, 3, 4,...) из произведения двух неотрицательных чипсел равен произведению корней n-й степени из этих чисел:

Замечание:

1. Теорема 1 остается справедливой и для случая, когда подкоренное выражение представляет собой произведение более чем двух неотрицательных чисел.

Теорема 2. Если , и n - натуральное число, большее 1, то справедливо равенство


Краткая (хотя и неточная) формулировка, которую удобнее использовать на практике: корень из дроби равен дроби от корней.

Теорема 1 позволяет нам перемножать только корни одинаковой степени , т.е. только корни с одинаковым показателем.

Теорема 3.Если , k - натуральное число и n - натуральное число, большее 1, то справедливо равенство

Иными словами, чтобы возвести корень в натуральную степень, достаточно возвести в эту степень подкоренное выражение.
Это - следствие теоремы 1. В самом деле, например, для к = 3 получаем: Точно так же можно рассуждать в случае любого другого натурального значения показателя к.

Теорема 4.Если , k, n - натуральные числа, большее 1, то справедливо равенство

Иными словами, чтобы извлечь корень из корня, достаточно перемножить показатели корней.
Например,

Будьте внимательны! Мы узнали, что над корнями можно осуществлять четыре операции: умножение, деление, возведение в степень и извлечение корня (из корня). А как же обстоит дело со сложением и вычитанием корней? Никак.
Например, вместо нельзя написать В самом деле, Но ведь очевидно, что

Теорема 5.Если показатели корня и подкоренного выражения умножить или разделить на одно и то же натуральное число, то значение корня не изменится, т.е.



Примеры решения заданий


Пример 1. Вычислить

Решение.
Воспользовавшись первым свойством корней (теорема 1), получим:

Пример 2. Вычислить
Решение. Обратим смешанное число в неправильную дробь.
Имеем Воспользовавшись вторым свойством корней (теорема 2 ), получим:


Пример 3. Вычислить:

Решение. Любая формула в алгебре, как вам хорошо известно, используется не только «слева направо», но и «справа налево». Так, первое свойство корней означает, что можно представить в виде и, наоборот, можно заменить выражением . То же относится и ко второму свойству корней. Учитывая это, выполним вычисления.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.


ТЕМА: Степенная функция. Корень n-й степени

ЦЕЛЬ:

    Повторение пройденного материала в ходе игры, осознанное усвоение данных тем.

    Воспитание ответственности, внимания, тренировка памяти.

    Развитие сообразительности, находчивости. Способствовать развитию познавательного интереса к математике.

ОРГАНИЗАЦИОННЫЙ МОМЕНТ

Прозвенел звонок. Дети расселись по своим местам. Учитель задает вопросы учащимся, а они отвечают на вопросы, поднимая руки:

Скажите, пожалуйста, что мы изучали на нескольких последних уроках? (тему данного урока дети называют сами )

А как вы думаете, какова цель нашего сегодняшнего урока? (Цель урока дети пытаются сформулировать сами, учитель лишь корректирует ее )

Добро пожаловать в страну « Математику »! В страну логарифмов, простых вычислений, корней, возведений и уравнений! В путешествие по стране « Математики » отправляются 2 команды: «КОРЕНЬ», «СТЕПЕНЬ», путешествие будет проходить под девизом (записан на доске заранее ): «КНИГА – КНИГОЙ, А МОЗГАМИ ДВИГАЙ» (В.В.Маяковский). Члены команд за правильные ответы будут поощряться «красными карточками».

1. Формирование команд

Каждый ученик при входе в кабинет получил карточку, на которой записана формула функции (у всех разные). Каждый учащийся определяет, какая у него функция четная или нечетная, если четная – команда «КОРЕНЬ», нечетная - «СТЕПЕНЬ».

Варианты функций: f (x )= , f (x )=

f(x)=
, f(x)=

f(x)= f(x)=

f(x)= f(x)=

f(x)=
f(x)=

f(x)=, f(x)=

f(x)=
f(x)=

f (x )= f (x )=

f (x )= f (x )=

2. Выбор командира каждой команды

ЗАДАНИЕ: решить и защитить свой ответ (командир должен уметь быстро соображать и за все отвечать); при каких значениях переменной выражение имеет смысл (выражения записаны на доске заранее ) :

|

Ответ: -8≤ х Ответ: -11≤ х

3. Разминка

За каждый правильный ответ – 1 карточка (команды начинают набирать баллы ). Учитель читает задание, учащиеся – отвечают.

    Арифметический я знак

В задачнике меня найдешь во многих строчках.

Лишь «о» ты вставишь в слово, зная как,

И я - географическая точка. (+, полюс)

    Я – цифра меньше десяти,

Меня тебе легко найти.

Но если букве «я» прикажешь рядом встать,

Я все – отец, и ты, и дедушка, и мать. (семь, семья)

4. Продолжаем путешествие и на нашем пути встречается огромная стена, на которой записано задание (заранее приготовить плакат в виде стены ): вычислить:
, чтобы преодолеть эту стену, нужно решить это задание, какая команда решит, та заработает баллы.
(0,7+0,3=1)

1) свойства степенной функции с n – четным;

2) свойства степенной функции с n – нечетным.

6. Следующим испытанием для нас станет конкурс «ПОКАЖИ СЕБЯ». Условия конкурса: каждый участник команды по очереди идет к доске и решает на выбор любое задание, побеждает команда первая справившаяся с заданиями.

Сравни:

1)

2)

3)

Решите уравнение:

4)

6)

Вычислить:

7)

8)

9)

7. Команды готовят вопросы друг другу. Получают баллы за правильный ответ и за оригинальность.

8. ИТОГ. НАГРАЖДЕНИЕ. Каждая команда готовит заключительное слово, в котором раскрываются вопросы: что полезного дал сегодняшний урок каждой команде и отдельным представителям, замечания к уроку и учителю. Выставление оценок с комментариями (за какую деятельность и почему).

Загрузка...
Top