Эдвард лоуренс теория хаоса читать онлайн. Chaos Theory (Теория хаоса) (Lorenz Poincaré). Предположения Теории хаоса). Условия

Теория хаоса! Научный прорыв хаоса!

Теория хаоса!

Теория хаоса! Научный прорыв хаоса!

Теория хаоса - это метод научных исследований и математический аппарат, описывающий поведение некоторых нелинейных динамических систем, подверженных при определённых условиях явлению, известному как хаос (динамический хаос, детерминированный хаос).

Поведение такой системы кажется случайным, даже если модель, описывающая систему, является детерминированной. Для акцентирования особого характера изучаемого в рамках этой теории явления, обычно принято использовать название: теория динамического хаоса.

Примеров подобных систем достаточно много.

Например: галактический каннибализм, атмосфера земли, турбулентные потоки в атмосфере.

Примеры, в живой природе: биологические популяции, общество как система коммуникаций и его подсистемы: экономические, политические и другие социальные системы.

Их изучение, наряду с аналитическим исследованием имеющихся рекуррентных соотношений, обычно сопровождается математическим моделированием.

Теория хаоса! История!

Теория хаоса гласит, что сложные системы чрезвычайно зависимы от первоначальных условий, и небольшие, зачастую случайные, изменения в окружающей среде могут привести к непредсказуемым последствиям.

Математические системы с хаотическим поведением являются детерминированными, то есть подчиняются некоторому строгому закону, и, в каком-то смысле, то же являются упорядоченными. Такое использование слова «хаос» существенно отличается от его обычного значения. Существует также такая область физики, как теория квантового хаоса, изучающая недетерминированные системы, подчиняющиеся законам квантовой механики.

Теория хаоса! История!

Первым исследователем хаоса и хаотичных систем был Анри Пуанкаре. В 1880-х, при изучении поведения системы с тремя телами, взаимодействующими гравитационно, он заметил, что могут быть непериодические орбиты, которые постоянно и не удаляются и не приближаются к конкретной точке.

В 1898 Жак Адамар издал влиятельную работу о хаотическом движении свободной частицы, скользящей без трения по поверхности постоянной отрицательной кривизны. В своей работе «бильярд Адамара» он доказал, что все траектории непостоянны и частицы в них отклоняются друг от друга с положительной экспонентой Ляпунова.

Несмотря на попытки понять хаос, присущий многим природным явлениям и системам, в первой половине двадцатого столетия, теория хаоса как таковая начала формироваться только с середины столетия.

Тогда для некоторых учёных стало очевидно, что преобладающая в то время линейная теория просто не может объяснить некоторые наблюдаемые эксперименты подобно логистическому отображению. Чтобы заранее исключить неточности при изучении, например простые «помехи», в теории хаоса считали полноценной составляющей изучаемой системы.

Основным катализатором для развития теории хаоса стало изобретение электронно-вычислительных машин. Большая часть математики в теории хаоса выполняет повторную итерацию простых математических формул, которые делать вручную весьма трудоёмко. Электронно-вычислительные машины делали такие повторные вычисления достаточно быстро, тогда как рисунки и изображения позволяли визуализировать эти системы.

Одним из пионеров в теории хаоса был Эдвард Лоренц, интерес которого к хаосу появился случайно, когда он в 1961 году проводил работы по предсказанию погоды.

Погодное Моделирование Лоренц выполнял на простом цифровом компьютере McBee LGP-30. Когда он захотел увидеть всю последовательность данных, тогда, чтобы сэкономить время, он запустил моделирование с середины процесса. Хотя это можно было сделать введя данные с распечатки, которые он вычислил в прошлый раз. К его удивлению погода, которую машина начала предсказывать, полностью отличалась от погоды, рассчитанной прежде.

Лоренц обратился к компьютерной распечатке. Компьютер работал с точностью до 6 цифр, но распечатка округлила переменные до 3 цифр, например значение 0.506127 было напечатано как 0.506. Это несущественное отличие не должно было иметь фактически никакого эффекта.

Однако Лоренц обнаружил, что малейшие изменения в первоначальных условиях вызывают большие изменения в результате. Открытию дали имя Лоренца и оно доказало, что Метеорология не может точно предсказать погоду на период более недели.

Годом ранее, Бенуа Мандельброт нашёл повторяющиеся образцы в каждой группе данных о ценах на хлопок. Он изучал теорию информации и заключил, что Структура помех подобна набору Регента: в любом масштабе пропорция периодов с помехами к периодам без них была константа - значит ошибки неизбежны и должны быть запланированы. Мандельброт описал два явления: «эффект Ноя», который возникает, когда происходят внезапные прерывистые изменения, например, изменение цен после плохих новостей, и «эффект Иосифа» в котором значения постоянны некоторое время, но все же внезапно изменяются впоследствии. В 1967 он издал работу «Какой длины побережье Великобритании? Статистические данные подобностей и различий в измерениях» доказывая, что данные о длине береговой линии изменяются в зависимости от масштаба измерительного прибора. Бенуа Мандельброт утверждал, что клубок бечевки кажется точкой, если его рассматривать издалека (0-мерное пространство), он же будет клубком или шаром, если его рассматривать достаточно близко (3-мерное пространство) или может выглядеть замкнутой кривой линией сверху (1-мерное пространство). Он доказал, что данные измерения объекта всегда относительны и зависят от точки наблюдения.

Объект, изображения которого являются постоянными в различных масштабах («самоподобие») является фракталом (например кривая Коха или «снежинка»). В 1975 году Бенуа Мандельброт опубликовал работу «Фрактальная геометрия природы», которая стала классической теорией хаоса. Некоторые биологические системы, такие как система кровообращения и бронхиальная система, подходят под описание фрактальной модели.

Советский физик Лев Ландау разработал Ландау-Хопф теорию турбулентности. Позже, Дэвид Руелл и Флорис Тейкнс предсказали, вопреки Ландау, что турбулентность в жидкости могла развиться через странный аттрактор, то есть основную концепцию теории хаоса.

Теория хаоса! История!

27 ноября 1961 Й. Уэда, будучи аспирантом в лаборатории Киотского университета, заметил некую закономерность и назвал её «случайные явления превращений», когда экспериментировал с аналоговыми вычислительными машинами. Тем не менее его руководитель не согласился тогда с его выводами и не позволил ему представить свои выводы общественности аж до до 1970 года.

В декабре 1977 года Нью-Йоркская академия наук организовала первый симпозиум о теории хаоса, который посетили Дэвид Руелл, Роберт Мей, Джеймс А. Иорк, Роберт Шоу, Й. Даян Фермер, Норман Пакард и метеоролог Эдвард Лоренц.

В следующем году, 1978 году, Митчелл Фейгенбаум издал статью «Количественная универсальность для нелинейных преобразований», где он описал логистические отображения. Митчелл Фейгенбаум применил рекурсивную геометрию к изучению естественных форм, таких как береговые линии. Особенность его работы в том, что он установил универсальность в хаосе и применял теорию хаоса ко многим явлениям.

В 1979 году Альберт Дж. Либчейбр на симпозиуме в Осине, представил свои экспериментальные наблюдения каскада раздвоения, который ведет к хаосу. Его наградили премией Вольфа в физике совместно с Митчеллом Дж. Фейгенбаумом «за блестящую экспериментальную демонстрацию переходов к хаосу в динамических системах».

В 1986 году, Нью-Йоркская Академия Наук вместе с национальным Институтом Мозга и центром Военно-морских исследований организовали первую важную конференцию по хаосу в биологии и медицине. Там Бернардо Уберман продемонстрировал математическую модель глаза и нарушений его подвижности среди шизофреников.

Это привело дало толчок к широкому применению теории хаоса в физиологии и в медицине в 1980-х годах, например в изучении патологии сердечных циклов.

В 1987 году Пер Бак, Чао Тан и Курт Висенфелд напечатали статью, где впервые описали систему самодостаточности (СС), которая является одним из природных механизмов. Многие исследования тогда были сконцентрированы вокруг крупномасштабных естественных или социальных систем.

Концепция системы самодостаточности (СС) стала сильным претендентом на объяснение множества естественных явлений, включая землетрясения, солнечные всплески, колебания в экономических системах, формирование ландшафта, лесные пожары, оползни, эпидемии и биологическую эволюцию.

Учитывая нестабильное и безмасштабное распределение случаев возникновения, странно, что некоторые исследователи предложили рассмотреть как пример системы самодостаточности (СС) возникновение войн. Эти «прикладные» исследования включали в себя две попытки моделирования: разработка новых моделей и приспособление существующих к данной естественной системе.

В том же 1987 году Джеймс Глеик издал работу «Хаос: создание новой науки», которая стала бестселлером и представила широкой публике общие принципы теории хаоса и её хронологию.

Теория хаоса! История!

Теория хаоса прогрессивно развивалась как межпредметная и университетская дисциплина, главным образом под названием «анализ нелинейных систем».

Опираясь на концепцию Томаса Куна о парадигме сдвига, много «учёных-хаотиков» (так они сами назвали себя) утверждали, что эта новая теория и есть пример сдвига.

Теория хаоса! История!

Теория хаоса! Анализ нелинейных систем!

Доступность для ученых более мощных компьютеров расширила возможности изучения сложных нелинейных систем, и расширила возможности практического применения теории хаоса.

Теория хаоса! История!

К наиболее известным исследователям нелинейных систем и систем с хаотичными характеристиками принято причислять: французского физика и философа Анри Пуанкаре, который доказал теорему о возвращении, советских математиков А. Н. Колмогорова и В. И. Арнольда, немецкого математика Ю. К. Мозера. В результате их усилий была создана теория хаоса, которую часто называют КАМ (теория Колмогорова - Арнольда - Мозера).

Теория хаоса КАМ вводит понятие аттракторов (в том числе, странных аттракторов как притягивающих канторовых структур), устойчивых орбит системы, так называемых КАМ-торов.

Хаос! Теория хаоса. Теория анализа нелинейных систем.

Хаос! Научное понимание научного хаоса!

В бытовом контексте слово «хаос» означает «абсолютный беспорядок».

Сразу отметим, что в теории хаоса прилагательное хаотичный определяется более точно. Хотя общепринятого универсального математического определения хаоса нет, обычно используемое определение «хаос» говорит, что динамическая система, которая классифицируется как хаотическая, должна иметь следующие свойства:

Она должна быть чувствительна к начальным условиям;

Она должна иметь свойство топологического смешивания;

Её периодические орбиты должны быть всюду плотными.

Более точные математические условия возникновения хаоса выглядят так:

Система, которую ученые относят к системе «хаоса» должна иметь нелинейные характеристики, быть глобально устойчивой, но иметь хотя бы одну неустойчивую точку равновесия колебательного типа, при этом размерность системы должна быть не менее 1,5.

Линейные системы никогда не бывают хаотическими. Для того, чтобы динамическая система была хаотичной, она должна быть нелинейной. По теореме Пуанкаре-Бендиксона (Poincar-Bendixson), непрерывная динамическая система на плоскости не может быть хаотической. Среди непрерывных систем хаотическое поведение имеют только неплоские пространственные системы (обязательно наличие не менее трёх измерений или неевклидова геометрия).

Однако дискретная динамическая система на какой-то стадии может проявить хаотическое поведение даже в одномерном или двумерном пространстве.

Хаос! Научное понимание хаоса!

Чувствительность к начальным условиям. Что означает чувствительность к начальным условиям?

Чувствительность к начальным условиям в системе «хаоса» означает, что все точки, первоначально близко приближенные между собой, в будущем имеют значительно отличающиеся траектории. Таким образом, произвольно небольшое изменение текущей траектории может привести к значительному изменению в её будущем поведении. Доказано, что последние два свойства фактически подразумевают чувствительность к первоначальным условиям (альтернативное, более слабое определение хаоса использует только первые два свойства из вышеупомянутого списка).

Чувствительность к начальным условиям более известна как «Эффект бабочки».

Данный термин «эффект бабочки» получил распространение после появления статьи «Предсказание: Взмах крыльев бабочки в Бразилии вызовет торнадо в штате Техас», которую Эдвард Лоренц в 1972 году вручил американской «Ассоциации для продвижения науки» в Вашингтоне.

Взмах крыльев бабочки символизирует мелкие изменения в первоначальном состоянии системы, которые вызывают цепочку событий, ведущих к крупномасштабным изменениям. Если бы бабочка не хлопала крыльями, то траектория системы была бы совсем другой, что в принципе доказывает определённую линейность системы. Но мелкие изменения в первоначальном состоянии системы могут и не вызывать цепочку событий.

Хаос! Научное понимание хаоса!

Топологическое смешивание. Что означает термин топологическое смешивание?

Топологическое смешивание в динамике хаоса означат такую схему расширения системы, когда одна её область в какой-то стадии расширения накладывается на любую другую область. Математическое понятие «смешивание», как пример хаотической системы, соответствует смешиванию разноцветных красок или жидкостей.

Хаос! Научное понимание хаоса!

Чувствительность хаотичной системы. Тонкости понимания.

В популярных работах чувствительность хаотичной системы к первоначальным условиям часто путается с самим хаосом. Грань очень тонкая, поскольку зависит от выбора показателей измерения и определения расстояний в конкретной стадии системы.

Например, наблюдаем простую динамическую систему, которая неоднократно удваивает первоначальные значения. Такая система имеет чувствительную зависимость от первоначальных условий везде, так как любые две соседние точки в первоначальной стадии впоследствии случайным образом будут на значительном расстоянии друг от друга. Однако её поведение тривиально, поскольку все точки кроме нуля имеют тенденцию к бесконечности, и это не топологическое смешивание. В определении хаоса внимание обычно ограничивается только закрытыми системами, в которых расширение и чувствительность к первоначальным условиям объединяются со смешиванием.

Даже для закрытых систем, чувствительность к первоначальным условиям не идентична с хаосом в смысле изложенном выше.

Хаос! Научное понимание хаоса!

Аттракторы.

Аттрактор - это некоторое множество состояний (точнее - точек фазового пространства) динамической системы, к которому она стремится с течением времени. Наиболее простыми вариантами аттрактора являются притягивающая неподвижная точка (к примеру, в задаче о маятнике с трением) и периодическая траектория (пример - самовозбуждающиеся колебания в контуре с положительной обратной связью), однако бывают и значительно более сложные примеры. Некоторые динамические системы являются хаотичными всегда, но в большинстве случаев хаотичное поведение наблюдается только в тех случаях, когда параметры динамической системы принадлежат к некоторому специальному подпространству.

Наиболее интересны случаи хаотичного поведения, когда большой набор первоначальных условий приводит к изменению на орбитах аттрактора. Простой способ продемонстрировать хаотический аттрактор - это начать с точки в районе притяжения аттрактора и затем составить график его последующей орбиты.

Из-за состояния топологической транзитивности, это похоже на отображения картины полного конечного аттрактора. Например, в системе описывающей маятник - пространство двумерное и состоит из данных о положении и скорости. Можно составить график положений маятника и его скорости. Положение маятника в покое будет точкой, а один период колебаний будет выглядеть на графике как простая замкнутая кривая. График в форме замкнутой кривой называют орбитой. Маятник имеет бесконечное количество таких орбит, формируя по виду совокупность вложенных эллипсов.

Хаос! Научное понимание хаоса!

Странные аттракторы.

Большинство типов движения описывается простыми аттракторами, являющимися ограниченными циклами.

Хаотическое движение описывается странными аттракторами, которые очень сложны и имеют много параметров.

Например, простая трехмерная система погоды описывается известным аттрактором Лоренца (Lorenz) - одной из самых известных диаграмм хаотических систем, не только потому, что она была одной из первых, но и потому, что она одна из самых сложных.

Некоторые дискретные динамические системы названы системами Жулиа по происхождению. И странные аттракторы и системы Жулиа имеют типичную рекурсивную, фрактальную структуру.

Теорема Пуанкаре-Бендиксона доказывает, что странный аттрактор может возникнуть в непрерывной динамической системе, только если она имеет три или больше измерений. Однако это ограничение не работает для дискретных динамических систем.

Дискретные двух- и даже одномерные системы могут иметь странные аттракторы. Движение трёх или большего количества тел, испытывающих гравитационное притяжение при некоторых начальных условиях может оказаться хаотическим движением.

Хаос! Научное понимание хаоса!

Простые хаотические системы.

Хаотическими могут быть и простые системы без дифференциальных уравнений. Примером может быть логистическое отображение, которое описывает изменение количества населения с течением времени. Логистическое отображение является полиномиальным отображением второй степени и часто приводится в качестве типичного примера того, как хаотическое поведение может возникать из очень простых нелинейных динамических уравнений. Ещё один пример - это модель Рикера, которая также описывает динамику населения.

Показать хаос для соответствующих значений параметра может даже одномерное отображение, но для дифференциального уравнения требуется три или больше измерений. Теорема Пуанкаре - Бендиксона утверждает, что двумерное дифференциальное уравнение имеет очень стабильное поведение. Zhang и Heidel доказали, что трехмерные квадратичные системы только с тремя или четырьмя переменными не могут демонстрировать хаотическое поведение. Причина в том, что решения таких систем являются асимптотическими по отношению к двумерным плоскостям, и поэтому представляют собой стабильные решения.

Хаос! Научное понимание хаоса!

Математическая теория.

Теорема Шарковского - это основа доказательства Ли и Йорке (Li and Yorke) (1975) о том, что одномерная система с регулярным тройным периодом цикла может отобразить регулярные циклы любой другой длины так же, как и полностью хаотических орбит.

Ученые математики изобрели много дополнительных способов для описания и исследования хаотических систем на основе количественных показателей. Сюда входят: рекурсивное измерение аттрактора, экспоненты Ляпунова, графики рекуррентного соотношения, отображение Пуанкаре, диаграммы удвоения и оператор сдвига.

Хаос! Научное понимание хаоса!

Научное понимание хаотичных систем помогает решать сложные современные задачи в изучении окружающего нас мира.

Это относится к прогнозам погоды, землетресений, извержений вулканов, космическим явлениям, межпланетным полетам, и другим сложным процессам.

Теория хаоса продолжает быть очень активной областью научных изысканий, привлекая к своим исследованиям много разных дисциплин.

Можно отметить, что и теория хаоса позволила добиться новых достижений в области таких наук, как: математика, пространственная геометрия, топология, физика, биология, метеорология, астрофизика, теория информации, космология, социология, конфликтология и другие.

Теория хаоса! Научный прорыв хаоса! Научное понимание хаоса! Анализ нелинейных систем! Теория хаоса - это область нелинейных исследований!

Книга "ЗА ПРЕДЕЛАМИ МОЗГА" подводит итог тридцатилетним исследованиям автора в области трансперсональной психологии и терапии. В ходе изучения необычных состояний сознания Станислав Гроф приходит к выводу о значительном пробеле в современных научных теориях сознания и психики, которые не учитывают важность добиографических (пренатальных и перинатальных) и трансперсональных (надличностных) уровней. он предлагает новую расширенную картографию психики, включающую в себя современные психологические и древние мистические описания. Автор…

Око духа: Интегральное видение для слегка… Кен Уилбер

Кена Уилбера сегодня считают одним из влиятельнейших представителей трансперсональной психологии, возникшей около 30 лет назад. Его интегральный подход предпринимает попытку согласованного объединения практически всех областей знания от физики и биологии, теории систем и теории хаоса, искусства, поэзии и эстетики, до всех значительных школ и направлений антропологии, психологии и психотерапии, великих духовно-религиозных традиций Востока и Запада. Развитое Уилбером интеллектуально-духовное видение предлагает новые возможности для соотнесения…

Хаос. Создание новой науки Джеймс Глейк

В 1970-х годах ученые начинают изучать хаотические проявления в окружающем нас мире: формирование облаков, турбулентность в морских течениях, колебания численности популяций растений и животных… Исследователи ищут связи между различными картинами беспорядочного в природе. Десять лет спустя понятие «хаос» дало название стремительно расширяющейся дисциплине, которая перевернула всю современную науку. Возник особый язык, появились новые понятия: фрактал, бифуркация, аттрактор… История науки о хаосе - не только история новых теорий и неожиданных…

Хаос и порядок. Прыжок в безумие Стивен Дональдсон

Стивен Дональдсон продолжает рассказ о жизни на затерянных в пространстве станциях, о геологах, пиратах и полицейских, о пустоте Глубокого Космоса, ломающего человеческую психику и не знающего милосердия. После выполнения секретной миссии по уничтожению пиратских верфей на планетоиде Малый Танатос звездолет «Труба» пытается уйти от преследования. На борту – Морн Хайленд и ее сын Дейвис, киборг Энгус Термопайл и капитан Ник Саккорсо – старые враги, объединившиеся в отчаянной попытке выжить. Незыблемы законы Галактики, но непредсказуемы…

Творчество как точная наука. Теория решения… Генрих Альтов

Творчество изобретателей издавна связано с представлениями об «озарении», случайных находках и прирожденных способностях. Однако современная научно-техническая революция вовлекла в техническое творчество миллионы людей и остро поставила проблему повышения эффективности творческого мышления. Появилась теория решения изобретательских задач, которой и посвящена эта книга. Автор, знакомый многим читателям по книгам «Основы изобретательства», «Алгоритм изобретения» и другим, рассказывает о новой технологии творчества, ее возникновении,…

Проклятие Эдварда Мунка Ольга Тарасевич

С картинами норвежского художника Эдварда Мунка всегда происходили непонятные истории. Несколько лет назад шедевры экспрессиониста исчезли из музея в Осло, а недавно были обнаружены при загадочных обстоятельствах… В Москве таинственный преступник зверски убивает женщин. Возле тел с множественными ножевыми ранениями следователь Владимир Седов находит репродукции Эдварда Мунка. Журналистка и писательница Лика Вронская пытается помочь своему приятелю Седову, однако люди, способные содействовать расследованию, погибают один за другим.…

Приключения одной теории Тур Хейердал

Почти на шестьдесят языков переведена замечательная книга Тура Хейердала «Путешествие на Кон-Тики», со страниц которой в каждый дом входит одна из интереснейших проблем истории человечества. На написанные для массового читателя научно-художественные книги Хейердала неизбежно ограничены рамками жанра. Между тем у замечательного подвига во имя науки есть свое продолжение. Исследования Тура Хейердала выходят далеко за рамки того, о чем мы знаем по изданным книгам. Новая книга Тура Хейердала восполняет этот пробел. Это сборник его статей и…

Мера хаоса Дмитрий Казаков

Это мир давней и безнадежной войны с Хаосом, мир, где маги играют бесконечные игры чужими жизнями, кровь льется потоками, а выжить еще труднее, чем сохранить в себе доброту и благородство. Хорст Вихор, бродячий мастеровой, попав в безвыходную ситуацию, становится фигурой в руках могущественного колдуна. Безжалостный хозяин ведет игру, не обращая внимания на то, что его фишка может испытывать боль, страх и отвращение к тому, что ей приходится делать. В беспрерывных странствиях Хорст попадает туда, где до него не был никто из людей, оказывается в…

Пришельцы из Будущего: Теория и практика… Брюс Голдберг

В своей книге д-р Брюс Голдберг исследует возможность путешествия во времени и рассматривает теории и факты, доказывающие, что путешествия во времени - повседневное явление! Люди из нашего будущего возвращаются назад в качестве путешественников во времени. Как доказывает Голдберг, их-то мы ошибочно и принимаем за «инопланетян». Он объясняет, каким образом эти путешественники во времени используют, вместо космических кораблей или машин времени, гиперпространственный механизм.

Церковная песня [Гимн Хаоса] Роберт Сальваторе

Зловещий Замок Тринити, оплот мрачной секты, поклоняющейся злому божеству, получил в свое распоряжение страшное оружие, с помощью которого намеревается погрузить земли Забытых Королевств в хаос. Первый удар решено нанести по древней сокровищнице знаний и центру просвещения – Библиотеке Назиданий, которая стала родным домом для юного Кэддерли, жизнерадостного и любознательного жреца Денира. Именно ему предстоит встать на защиту цитадели мудрости и сразиться с могущественным некромантом. Впервые выходящий на русском языке «Гимн Хаоса» Роберта…

Почему экономическая наука должна стать… Внутренний СССР

Настоящая записка имеет целью пояснение причин, вследствие которых экономический раздел Концепции общественной безопасности (далее КОБ) в принципе невозможно адекватно интерпретировать через понятийный и терминологический аппарат школ экономической науки, сложившихся в толпо-"элитарной" культуре. Это необходимо пояснить, чтобы помочь заинтересованным в том лицам преодолеть недоразумения, обусловленные качественно разными подходами к описанию хозяйственной деятельности общества в экономической теории КОБ с одной стороны, и с другой…

Удивительное путешествие кролика Эдварда Кейт ДиКамилло

Однажды бабушка Пелегрина подарила внучке Абилин удивительного игрушечного кролика по имени Эдвард Тюлейн. Его сделали из тончайшего фарфора, у него был целый гардероб изысканных шелковых костюмчиков и даже золотые часы на цепочке. Абилин обожала своего кролика, целовала его, наряжала и каждое утро заводила его часики. А кролик никого, кроме себя, не любил. Как-то Абилин вместе с родителями отправилась в морское путешествие, и кролик Эдвард, упав за борт, оказался на самом дне океана. Старый рыбак выловил его и принес жене. Потом кролик попадал…

Всеобщая теория всего Михаил Веллер

Теория сия представляется истинной тем, что в нее вполне укладывается, ей соответствует и ею объясняется все сущее. Поиски смысла жизни предполагают, что и жизнь человека, и всего человечества не есть нечто ограниченное собственными рамками, конечное, целесообразное внутри себя без внешней цели и функции. А есть лишь часть большего, всеобщего, где человек и все человечество имеет задачу, функцию, роль, назначение в масштабах всего сущего – бытия. Вот вам рассмотрение вопроса в полном охвате. Жизнь это, конечно, никому не облегчит. И не изменит.…

Двор Хаоса Роджер Желязны

Противостояние Хаоса и Амбера достигло своей высшей точки. Оберон вернулся, и Камень Правосудия отошел к своему законному владельцу. Лабиринт должен быть восстановлен, но если Оберон не справится с этой задачей, Амбер и окружающие его Тени погибнут. И тогда за дело должен будет взяться Корвин...

О чем умолчал ваш учебник: Правда и вымысел… Д. Кузнецов

В большинстве современных учебников биологии эволюционная теория обычно представлена как единственно правильное, научное объяснение происхождения жизни на Земле во всем многообразии ее форм. В данной работе сделана попытка познакомить читателей с научными доказательствами, которые противоречат теории эволюции. В брошюре приведены многочисленные высказывания ученых-эволюционистов, указывающие на слабые места и ошибки в эволюционной теории. Брошюра рассчитана на специалистов-биологов, а также на читателей, интересующихся проблемой возникновения…

Роман с Хаосом Андрей Мартьянов

«Роман с Хаосом» начинается как классическая научная фантастика - со сверхмощных компьютеров и космических станций на другом конце Вселенной. Однако вскоре череда невероятных событий переносит героев, а с ними и читателя, в удивительный мир наизнанку, где с эльфами соседствуют тамплиеры, а с вампирами - наемники Тридцатилетней войны. В пародийно-юмористической форме в романе осмеиваются привычные литературные штампы и сюжетные ходы - и все это на фоне самых захватывающих приключений.

Карта Хаоса Дмитрий Емец

Хаос не имеет ни границ, ни очертаний. Он огромен и вечно меняется. Там, где вчера была дорога, сегодня можно ее не искать. Именно туда Генеральный страж света Троил послал специальный отряд златокрылых, чтобы освободить незаконно захваченные эйдосы. Но светлые не смогут вернуться без карты Хаоса. Только она способна указать дорогу назад. А для этого Эссиорху, Дафне и Корнелию нужно найти девушку, которая случайно стала обладательницей этого темного артефакта. Правда, ее ищут не только они. Новая хранительница карты Хаоса - дочь Арея...

Второе издание заново переработанное и дополненное. Составлено применительно к лекциям, читанным автором в центральных государственных питомниках. С 34 иллюстрациями, схемами и чертежами. Внимание читателя к быстро разошедшемуся первому изданию моей книги и та масса писем, которую я получаю до сих пор, указывает на заинтересованность читателя к научно-обоснованным методам дрессировки и на чрезвычайную бедность нашей специальной литературы по данному вопросу. Впервые, стремясь к созданию теоретических обоснований к дрессировке, мы, не имея…

- 177.38 Кб

1.Краткая биография…………………………… …………………………………...……3

2.Теория хаоса………………………………………… …………………………………..4

2.1.Основные сведения………………………………………………………… ……….6

2.2.Понятие хаоса………………………………………………………………… ……..6

2.3.Чувствительность к начальным условиям………………………………………....7

2.4 Топологическое смешивание…………………………………………………… ….7

2.5. Тонкости определения………………………………………………… ……….…..8

3. Аттракторы…………………………………………… ……………………………...…9

4. Странные аттракторы…………………………………………………… …………….10

5. Простые хаотические системы……………………………………………………….. 11

  • 6. Математическая теория……………………………………………………………. ….12
  • 7. Хронология…………………………………………… ………………………………..13
  • 8. Применение…………………………………………… ……………………………….15

9. Список литературы………………………………… …………………………….…....17

Краткая биография.

Эдвард Нортон Лоренц (23.05.1917-16.04.2008)- американский математик и метеоролог, один из основоположников Теории Хаоса, автор Эффекта бабочки, Аттрактора Лоренца.

Эдвард Нортон Лоренц родился в г. Вест-Хартфорд (шт. Коннектикут, США) в 1917 г., учился математике в Гарварде и метеорологии в знаменитом Массачусетском технологическом институте (МИТ), где в 1943 г. получил степень доктора наук. Во время Второй мировой войны служил в качестве метеоролога в ВВС США, после войны в течение долгих лет работал на кафедре метеорологии МИТ, которую и возглавил в 1977 году.

С 1946 года работал в Массачусетском технологическом институте, профессор. Является членом Американской академии гуманитарных и естественных наук, Американского метеорологического общества и Национальной академии наук США. Иностранный член по Отделению океанологии, физики атмосферы и географии(геофизическая гидродинамика) АН СССР (с 1991- РАН) с 27 декабря 1988 г.

В 2004 награжден Большой золотой медалью имени М.В. Ломоносова

“Еще мальчиком я любил проделывать разные штуки с цифрами, кроме того, меня завораживали погодные явления”, - вспоминал Лоренц. Подобные наклонности позволили ученому сделать важнейшее открытие. После многолетних исследований он пришел к выводу: небольшие изменения, происходящие в атмосфере или аналогичных ей моделях, могут приводить к обширным и неожиданным последствиям.

В 1972 г. профессор опубликовал научную статью, заглавие которой стало нарицательным. Она называлась “О возможности предсказаний: может ли взмах крыльев бабочки в Бразилии вызвать торнадо в Техасе?”. Эта формулировка отлично иллюстрирует суть возникшей из работ Лоренца теории хаоса, которая сейчас играет важную роль едва ли не во всех областях современной науки - от математики до биологии.

В 1975 г. Лоренца избрали членом Академии наук США, его заслуги были отмечены многочисленными наградами. В 1983 г. он и его коллега Генри Стоммел вместе получили Премию Кроуфорда в размере $50 тыс. от Шведской королевской академии наук. Таким образом скандинавы отмечают достижения ученых, специальности которых не позволяют претендовать на Нобелевскую премию.

Эдвард Лоренц являлся иностранным членом Российской академии наук. Оставив руководство кафедрой в Массачусетском институте, он преподавал в различных вузах Европы и Америки. Эдвард также не оставлял свои научные изыскания, и, по словам семьи, занимался метеорологией буквально до последних дней жизни.

“Показав, что сложные системы со множеством причинно-следственных связей имеют порог предсказуемости, Эд забил последний гвоздь в гроб вселенной Декарта и произвел то, что многие называют третьей научной революцией XX в. после теории относительности и квантовой физики, - сказал Керри Эмануэль, профессор метеорологии в МИТ. - Он также был безупречным джентльменом, его интеллигентность, честность и скромность показали важный пример будущим поколениям ученых”.

Теория хаоса - математический аппарат, описывающий поведение некоторых нелинейных динамических систем, подверженных при определённых условиях явлению, известному как хаос. Поведение такой системы кажется случайным, даже если модель, описывающая систему, является детерминированной.

Примерами подобных систем являются атмосфера, турбулентн ые потоки, биологические популяции, общество как система коммуникаций и его подсистемы: экономические, политические и другие социальные системы. Их изучение, наряду с аналитическим исследованием имеющихся рекуррентных соотношений, обычно сопровождается математическим моделированием, эффект Коновала - распределение частот выпадения положительных результатов, или принятия правильных решений.

Теория хаоса - область исследований, связывающая математику и физику.

Теория хаоса изучает порядок хаотической системы, которая выглядит случайной, беспорядочной. При этом теория хаоса помогает построить модель такой системы, не ставя задачу точного предсказания поведения хаотической системы в будущем.

Первые элементы теории хаоса появились еще в XIX веке, однако подлинное научное развитие эта теория получила во второй половине XX века, вместе с работами Эдварда Лоренца (Edward Lorenz) из Массачусетского технологического института и франко-американского математика Бенуа Б. Мандельброта (Benoit B. Mandelbrot).

Эдвард Лоренц в свое время (начало 60-х годов XX века, работа опубликована в 1963 году) рассматривал, в чем возникает трудность при прогнозировании погоды. До работы Лоренца в мире науки господствовало два мнения относительно возможности точного прогнозирования погоды на бесконечно длительный срок.

Первый подход сформулировал еще в 1776 году французский математик Пьер Симон Лаплас. Лаплас заявил, что "…если мы представим себе разум, который в данное мгновение постиг все связи между объектами во Вселенной, то он сможет установить соответствующее положение, движения и общие воздействия всех этих объектов в любое время в прошлом или в будущем". Этот его подход был очень похож на известные слова Архимеда: "Дайте мне точку опоры, и я переверну весь мир". Таким образом, Лаплас и его сторонники говорили, что для точного прогнозирования погоды необходимо только собрать больше информации обо всех частицах во Вселенной, их местоположении, скорости, массе, направлении движения, ускорении и т.п. Лаплас думал, чем больше человек будет знать, тем точнее будет его прогноз относительно будущего.

Второй подход к возможности прогнозирования погоды раньше всех наиболее четко сформулировал другой французский математик, Жюль Анри Пуанкаре. В 1903 году он сказал: "Если бы мы точно знали законы природы и положение Вселенной в начальный момент, мы могли бы точно предсказать положение той же Вселенной в последующий момент. Но даже если бы законы природы открыли нам все свои тайны, мы и тогда могли бы знать начальное положение только приближенно. Если бы это позволило нам предсказать последующее положение с тем же приближением, это было бы все, что нам требуется, и мы могли бы сказать, что явление было предсказано, что оно управляется законами. Но это не всегда так; может случиться, что малые различия в начальных условиях вызовут очень большие различия в конечном явлении. Малая ошибка в первых породит огромную ошибку в последнем. Предсказание становится невозможным, и мы имеем дело с явлением, которое развивается по воле случая".

В этих словах Пуанкаре мы находим постулат теории хаоса о зависимости от начальных условий. Последующее развитие науки, особенно квантовой механики, опровергло детерминизм Лапласа. В 1927 году немецкий физик Вернер Гейзенберг открыл и сформулировал принцип неопределенности. Этот принцип объясняет, почему некоторые случайные явления не подчиняются лапласовому детерминизму. Гейзенберг показал принцип неопределенности на примере радиоактивного распада ядра. Так, из-за очень малых размеров ядра невозможно знать все процессы, происходящие внутри него. Поэтому, сколько бы информации мы не собирали о ядре, точно предсказать, когда это ядро распадется невозможно. Какими же инструментами располагает теория хаоса. В первую очередь это аттракторы и фракталы.

Аттрактор (от англ. to attract - притягивать) - геометрическая структура, характеризующая поведение в фазовом пространстве по прошествии длительного времени. Здесь возникает необходимость определить понятие фазового пространства. Итак, фазовое пространство - это абстрактное пространство, координатами которого являются степени свободы системы. Например, у движения маятника две степени свободы. Это движение полностью определено начальной скоростью маятника и положением. Если движению маятника не оказывается сопротивления, то фазовым пространством будет замкнутая кривая. В реальности на Земле на движение маятника влияет сила трения. В этом случае фазовым пространством будет спираль. По простому, аттрактор - это то, к чему стремится прийти система, к чему она притягивается. - Самым простым типом аттрактора является точка. Такой аттрактор характерен для маятника при наличии трения. Независимо от начальной скорости и положения, такой маятник всегда придет в состояние покоя, т.е. в точку. - Следующим типом аттрактора является предельный цикл, который имеет вид замкнутой кривой линии. Примером такого аттрактора является маятник, на который не влияет сила трения. Еще одним примером предельного цикла является биение сердца. Частота биения может снижаться и возрастать, однако она всегда стремится к своему аттрактору, своей замкнутой кривой. - Третий тип аттрактора - тор. Несмотря на сложность поведения хаотических аттракторов, иногда называемых странными аттракторами, знание фазового пространства позволяет представить поведение системы в геометрической форме и соответственно предсказывать его. И хотя нахождение системы в конкретный момент времени в конкретной точке фазового пространства практически невозможно, область нахождения объекта и его стремление к аттрактору предсказуемы. Первым хаотическим аттрактором стал аттрактора Лоренца.

Аттрактор Лоренца рассчитан на основе всего трех степеней свободы - три обыкновенных дифференциальных уравнения, три константы и три начальных условия. Однако, несмотря на свою простоту, система Лоренца ведет себя псевдослучайным (хаотическим) образом. Смоделировав свою систему на компьютере, Лоренц выявил причину ее хаотического поведения - разницу в начальных условиях. Даже микроскопическое отклонение двух систем в самом начале в процессе эволюции приводило к экспоненциальному накоплению ошибок и соответственно их стохастическому расхождению.


Основные сведенья

Теория хаоса гласит, что сложные системы чрезвычайно зависимы от первоначальных условий и небольшие изменения в окружающей среде ведут к непредсказуемым последствиям.

Математические системы с хаотическим поведением являются детерминированными, то есть подчиняются некоторому строгому закону и, в каком-то смысле, являются упорядоченными. Такое использование слова «хаос» отличается от его обычного значения.

Существует также такая область физики, как теория квантового хаоса, изучающая недетерминированные системы, подчиняющиеся законам квантовой механики.

Пионерами теории считаются французский физик и философ Ан ри Пуанкаре (доказал теорему о возвращении), советские математики А. Н. Колмогоров и В. И. Арнольд и немецкий математик Ю. К. Мозер, построившие теорию хаоса, называемую КАМ (теория Колмогорова - Арнольда - Мозера). Теория вводит понятие аттракторов (в том числе, странных аттракторов как притягивающих канторовых структур), устойчивых орбит системы (т. н. КАМ-торов).

Понятие хаоса

Основная статья: Динамический хаос

Пример чувствительности системы к первоначальным условиям, где x → 4 x (1 - x) и y → x + y, если x y <1 (иначе x + y - 1). Здесь четко видно, что ряды значений x и y через какое-то время заметно отклоняются друг от друга хотя в первоначальных состояниях отличия микроскопические

В бытовом контексте слово «хаос» означает «быть в состоянии беспорядка». В теории хаоса прилагательное хаотический опр еделено более точно. Хотя общепринятого универсального математического определения хаоса нет, обычно используемое определение говорит, что динамическая система, которая классифицируется как хаотическая, должна иметь следующие свойства:

  1. она должна быть чувствительна к начальным условиям
  2. она должна иметь свойство топологического смешивания
  3. её периодические орбиты должны быть всюду плотными.

Более точные математические условия возникновения хаоса выглядят так:

  1. Система должна иметь нелинейные характеристики, быть глобально устойчивой, но иметь хотя бы одну неустойчивую точку равновесия колебательного типа, при этом размерность системы должна быть не менее 1,5 (т.е. порядок дифференциального уравнения не менее 3-го).

Линейные системы никогда не бывают хаотическими. Для того, чтобы динамическая система была хаотической, она должна быть нелинейной. По теореме Пуанкаре-Бендиксона (Poincaré- Bendixson), непрерывная динамическая система на плоскости не может быть хаотической. Среди непрерывных систем хаотическое поведение имеют только неплоские пространственные системы (обязательно наличие не менее трёхизмерений или неевклидова геометрия). Однако дискретная динамическая система на какой-то стадии может проявить хаотическое поведение даже в одномерном или двумерном пространстве.

Чувствительность к начальным условиям.

Чувствительность к начальным условиям в такой системе означает, что все точки, первоначально близко приближенные между собой, в будущем имеют значительно отличающиеся траектории. Таким образом, произвольно небольшое изменение текущей траектории может привести к значительному изменению в её будущем поведении. Доказано, что последние два свойства фактически подразумевают чувствительность к первоначальным условиям (альтернативное, более слабое определение хаоса использует только первые два свойства из вышеупомянутого списка).

Чувствительность к начальным условиям более известна как «Эффект бабочки». Термин возник в связи со статьёй «Предсказание: Взмах крыльев бабочки в Бразилии вызовет торнадо в штате Техас», которую Эдвард Лоренц в 1972 году вручил американской «Ассоциации для продвижения науки» в Вашингтоне. Взмах крыльев бабочки символизирует мелкие изменения в первоначальном состоянии системы, которые вызывают цепочку событий, ведущих к крупномасштабным изменениям. Если бы бабочка не хлопала крыльями, то траектория системы была бы совсем другой, что в принципе доказывает определённую линейность системы. Но мелкие изменения в первоначальном состоянии системы могут и не вызывать цепочку событий.

Топологическое смешивание.

Топологическое смешивание в динамике хаоса означает такую схему расширения системы, что одна её область в какой-то стадии расширения накладывается на любую другую область. Математическое понятие «смешивание», как пример хаотической системы, соответствует смешиванию разноцветных красок или жидкости.

Тонкости определения.

Пример топологического смешивания, где x → 4 x (1 - x) и y → x + y, если x + y <1 (иначе x + y - 1). Здесь синий регион в процессе развития был преобразован сначала в фиолетовый, потом в розовый и красный регионы и в конечном итоге выглядит как облако точек, разбросанных поперек пространства

В популярных работах чувствительность к первоначальным условиям часто путается с самим хаосом. Грань очень тонкая, поскольку зависит от выбора показателей измерения и определения расстояний в конкретной стадии системы. Например, рассмотрим простую динамическую систему, которая неоднократно удваивает первоначальные значения. Такая система имеет чувствительную зависимость от первоначальных условий везде, так как любые две соседние точки в первоначальной стадии впоследствии случайным образом будут на значительном расстоянии друг от друга. Однако её поведение тривиально, поскольку все точки кроме нуля имеют тенденцию к бесконечности, и это не топологическое смешивание. В определении хаоса внимание обычно ограничивается только закрытыми системами, в которых расширение и чувствительность к первоначальным условиям объединяются со смешиванием.

Даже для закрытых систем, чувствительность к первоначальным условиям не идентична с хаосом в смысле изложенном выше. Например, рассмотрим тор (геометрическая фигура, поверхность вращения окружности вокруг оси лежащей в плоскости этой окружности - имеет форму бублика), заданный парой углов (x, y) со значениями от нуля до 2π. Отображение любой точки (x, y) определяется как (2x, y+a), где значение a/2π является иррациональным. Удвоение первой координаты в отображении указывает на чувствительность к первоначальным условиям. Однако, из-за иррационального изменения во второй координате, нет никаких периодических орбит - следовательно отображение не является хаотическим согласно вышеупомянутому определению.

Аттракторы.

График аттрактора Лоренца для значений r = 28, σ = 10, b = 8/3

Аттра́ктор (англ. attract - привлекать, притягивать) - множество состояний (точнее - точек фазового пространства) динамической системы, к которому она стремится с течением времени. Наиболее простыми вариантами аттрактора являются притягивающая неподвижная точка (к примеру, в задаче о маятнике с трением) и периодическая траектория (пример - самовозбуждающиеся колебания в контуре с положительной обратной связью), однако бывают и значительно более сложные примеры. Некоторые динамические системы являются хаотическими всегда, но в большинстве случаев хаотическое поведение наблюдается только в тех случаях, когда параметры динамической системы принадлежат к некоторому специальному подпространству.

Наиболее интересны случаи хаотического поведения, когда большой набор первоначальных условий приводит к изменению на орбитахаттракто ра. Простой способ продемонстрировать хаотический аттрактор - это начать с точки в районе притяжения аттрактора и затем составитьграфик его последующей орбиты. Из-за состояния топологической транзитивности, это похоже на отображения картины полного конечного аттрактора. Например, в системе описывающей маятник - простран ство двумерное и состоит из данных о положении и скорости. Можно составить график положений маятника и его скорости. Положение маятника в покое будет точкой, а один период колебаний будет выглядеть на графике как простая замкнутая кривая. График в форме замкнутой кривой называют орбитой. Маятник имеет бесконечное количество таких орбит, формируя по виду совокупность вложенных эллипсов.

Странные аттракторы.

Аттрактор Лоренца как диаграмма хаотической системы. Эти два графика демонстрируют чувствительную зависимость от первоначальных условий в пределах занятого аттрактором региона

Описание работы

Эдвард Нортон Лоренц (23.05.1917-16.04.2008)- американский математик и метеоролог, один из основоположников Теории Хаоса, автор Эффекта бабочки, Аттрактора Лоренца.
Эдвард Нортон Лоренц родился в г. Вест-Хартфорд (шт. Коннектикут, США) в 1917 г., учился математике в Гарварде и метеорологии в знаменитом Массачусетском технологическом институте (МИТ), где в 1943 г. получил степень доктора наук. Во время Второй мировой войны служил в качестве метеоролога в ВВС США, после войны в течение долгих лет работал на кафедре метеорологии МИТ, которую и возглавил в 1977 году.

Содержание

1.Краткая биография………………………………………………………………...……3
2.Теория хаоса……………………………………………………………………………..4
2.1.Основные сведения………………………………………………………………….6
2.2.Понятие хаоса………………………………………………………………………..6
2.3.Чувствительность к начальным условиям………………………………………....7
2.4 Топологическое смешивание……………………………………………………….7
2.5. Тонкости определения………………………………………………………….…..8
3. Аттракторы…………………………………………………………………………...…9
4. Странные аттракторы………………………………………………………………….10
5. Простые хаотические системы………………………………………………………..11
6. Математическая теория…………………………………………………………….….12
7. Хронология……………………………………………………………………………..13
8. Применение…………………………………………………………………………….15
9. Список литературы……………………………………………………………….…....17

Вам может показаться, что теория Хаоса весьма далека от фондового рынка и трейдинга в в частности. И действительно, каким боком один из разделов математики, в котором рассматриваются сложные динамические системы нелинейного характера, может относиться к миру трейденга? А вот и может!

Особенность нелинейных систем заключается в том, что их поведение находится в прямой зависимости от начальных условий. Но даже конкретные модели не позволяют предугадать их дальнейшего поведения.

На планете существует множество примеров подобных систем - турбулентность, атмосфера, биологические популяции и прочее.

Но, несмотря на свою непредсказуемость, динамические системы строго подчиняются одному закону и при желании могут быть смоделированы. К примеру, на фондовом рынке трейдеры и инвесторы также сталкиваются с кривыми, которые поддаются анализу.

Немного истории

Теория Хаоса нашла свое применение еще в 19 веке, но это были лишь первые шаги. Более серьезно изучением данной теории занялись Эдвард Лоренс и Бенуа Мандельброт, но произошло это уже позже – во второй половине 20-го века. При этом Лоуренс в своей теории пытался спрогнозировать погоду. И ему удалось вывести основную причину ее хаотичного поведения – различные начальные условия.

Основные инструменты

К основным инструментам теории Хаоса можно отнести фракталы и аттракторы. В чем суть каждого из них? Аттрактор – это то, к чему притягивается система, куда пытается прийти в конечном итоге. Его величина чаще всего является статистической мерой хаоса в целом. В свою очередь фрактал представляет собой некую геометрическую фигуру, часть которой постоянно повторяется. К слову, именно исходя из этого, было выведено одно из основных свойств данного инструмента – самоподобие. Но есть и еще одно свойство – дробность, которое становится математическим отображением меры неправильности фрактала.

По своей сути этот инструмент представляет собой противоположность хаоса.

К сожалению, точной математической системы теории Хаоса для изучения рыночных цен не существует. Следовательно, применять теорию Хаоса на практике не стоит торопиться. С другой стороны данное направление является одним из наиболее популярных и достойно внимания.

Хаотичность рынков

Как показывает практика, большинство современных рынков подвержено определенным тенденциям. Что это значит? Если рассматривать кривую на большом временном промежутке, то всегда можно увидеть причину того или иного движения. Но не все так гладко. На рынке всегда присутствует некий элемент непредсказуемости, который может внести какая-либо катастрофа, политические события или же действия инсайдеров. При этом современная теория Хаоса пытается спрогнозировать изменения на рынке с учетом каких-то нейросетевых подходов.

Возможность моделирования систем

Опытные участники прекрасно знают, что функционирует на основании какой-то сложной системы. Это не удивительно, ведь в нем присутствует множество участников (инвесторы, продавцы, спекулянты, покупатели, арбитражеры, хеджеры и так далее), каждый из которых выполняет какие-то свои задачи. При этом некоторые модели описывают данную систему, к примеру, волны Эллиота .

Отличие распределения Мандельбротта от нормального распределения

На практике распределение цены имеет гораздо больший разброс, чем ожидает большинство участников рынка. Мандельброт считал, что колебания цены имеет бесконечную дисперсию. Именно поэтому любые методы анализа являются неэффективными. Им было предложено проводить анализ распределения цены исключительно на основе фрактального анализа , который показал себя с лучшей стороны.

Выводы

Билл Вильяс (автор книги «Торговый хаос») уверен, что характеризующими звеньями хаоса являются системность и случайность. По его мнению, хаос является постоянным, в сравнению с той же стабильностью, которая временна. В свою очередь – это порождение хаоса. По сути, теория Хаоса ставит под сомнение саму основу технического анализа.

По мнению Вильямса, тот участник рынка, который в своем анализе отталкивается только от линейной перспективы, никогда не добьется больших результатов.

Более того, трейдеры проигрывают потому, что полагаются на различные виды анализа, которые зачастую абсолютно бесполезны.

Будьте в курсе всех важных событий United Traders - подписывайтесь на наш

Изучение комплексных и динамических систем для выявления закономерностей порядка (нехаоса) из очевидных хаотичных явлений. Объяснение Chaos Theory (Теория хаоса) Lorenz ("60) и Poincaré. (ca 1900)

Что такое Chaos Theory (Теория хаоса) ? Описание

Методом Chaos Theory (Теория хаоса) от Lorenz и Poincaré будет методика можно использовать для систем изучать сложных и динамических для того чтобы показать закономерности порядка (нехаоса) из по-видимому хаотичных поведений.

«Chaos Theory (Теория хаоса) - Качественное изучение неустойчивого апериодического поведения в детерминистических нелинейных динамичных системах» (Kellert, 1993, P. 2). Апериодическое поведение наблюдается, когда нет ни одной переменной, описывающей состояние системы, которое испытывает регулярное повторение значений. Неустойчивое апериодическое поведение очень сложно: оно никогда не повторяется и проявляет эффект любого небольшого возмущения.

Согласно сегодняшней математической теории хаотичная система характеризуется «чувствительностью к начальным условиям». Другими словами, для того чтобы предсказать будущее состояние системы с определенностью, вам необходимо знать начальные условия с огромной точностью, в виду того что ошибки увеличиваются быстро из-за даже самой небольшой неточности.

Поэтому погоду настолько трудно прогнозировать. Теория также применялась к экономическим циклам, динамике животных популяций, в движении текучей среды, области планетарных орбит, электрического тока в полупроводниках, медицинских состояний (например, эпилептический припадок) и моделировании гонки вооружений.

Во 1960-х Edward Lorenz, метеоролог из MIT, работал над проектом по имитации закономерностей погоды на компьютере. Он случайно столкнулся с Эффектом бабочки (butterfly effect) после того, как отклонения в вычислениях на тысячные доли в значительной степени меняли процесс имитации. Эффект бабочки показывает, как изменения небольшого маштаба могут оказывать влияние на вещи большого масштаба. Это классический пример хаоса, где небольшие изменения могут повлечь большие изменения. Бабочка, хлопая своими крыльями в Гон Конге, может изменить закономерности торнадо в Техасе.

Chaos Theory (Теория хаоса) рассматривает организации/бизнес группы как сложные, динамические, нелинейные, созидательные и далекие от состояния равновесия системы. Их будущие результаты нельзя предсказать на основе прошлых и текущих событий и действий. В состоянии хаоса, организации одновременно ведут себя непредсказуемо (хаотично) и систематично (упорядоченно).

Происхождение Теории хаоса. История

Ilya Prigogine, лауреат Нобелевской премии, показал, что сложные структуры могут происходить от более простых. Это как порядок исходящий из хаоса. Henry Adams ранее описал данное явление цитатой «Chaos often breeds life, when order breeds habit». Однако Henri Poincaré был настоящим «отцом-основателем теории хаоса» . Планета Нептун была открыта в 1846 и была предсказана на основе наблюдений отклонений в орбите Урана. Король Норвегии Oscar II был готов дать награду любому, кто бы смог доказать или опровергнуть то, что солнечная система устойчива. Poincaré предложил свое решение, но когда его друг нашел ошибку в его вычислениях, награду отобрали до тех пор, пока он не смог придумать новое решение. Poincaré пришел к выводу, что решения не было. Даже законы Isaac Newton не помогали в решении этой огромной проблемы. Poincaré пытался найти порядок в системе, где его не было. Теория хаоса была сформулирована в 1960-х. Значительная и более практическая работа была проделана Edward Lorenz в 1960-х. Название хаос было придуманно Jim Yorke, ученым в области прикладной математики в университете Maryland (Ruelle, 1991).

Вычисление Chaos Theory (Теория хаоса)? Формула

В применении Теории хаоса, одиночная переменная x (n) = x (t0 + nt) с начальным временем, t0, и временем задержки, t, обеспечивает n-мерное пространство, или фазовое пространство, которое представляет собой все многомерное пространство состояния системы; может потребоваться до 4 измерений для того, чтобы представить фазовое пространство хаотичной системы. Таким образом, в течение длительного периода времени, анализируемая система выработает закономерности в рамках нелинейного временного ряда, что можно использовать для предсказания будущих состояний (Solomatine et al, 2001).

Применение Теории хаоса. Формы применения

Принципы Теории хаоса были успешно использованы для описания и объяснения разнообразных естественных и искусственных явлений. Such as:

    Предсказание эпилептических припадков. Предсказание финансовых рынков. Моделирование систем производства. Прогнозы погоды. Создание фракталов. Сгенерированные компьютером изображения с использованием принципов Chaos Theory (Теория хаоса) . (См. на этой странице.)

В условиях, когда Бизнес работает в неустойчивой, сложной и непредсказуемой среде, принципы Теории хаоса могут быть весьма ценны. Области применения могут включать:

    Бизнес стратегия/Корпоративная стратегия. Сложный процесс принятия решений. Социальные науки. Организационное поведение и организационное изменение. Сравните: Causal Model of Organizational Performance and Change (Причинно-следственная модель организационной деятельности и изменения) Поведение на фондовой биржи, инвестирование.

Стадии в Теории хаоса. Процесс

Для того, чтобы контролировать хаос, необходимо контролировать систему или процесс хаоса. Для контролирования системы, необходимы:

Цель, задача, которые система должна достигнуть и выполнить. Для системы с предсказуемым поведением (детерминистическим) это может быть определенное состояние системы. Система способная достигать цель или выполнять поставленные задачи. Некоторое способы оказания влияния на поведение системы. Включают Параметры контроля/control inputs (решения, правила принятия решений или начальные состояния).

Преимущества Теории хаоса. Преимущества

Теория хаоса имеет широкое применение в современном науке и технике. Коммуникация и менеджмент могут стать свидетелями смещения парадигмы, как и некоторые другие области бизнеса. Исследования и изучение этой области в академической среде могут быть весьма полезны для бизнеса и финансового мира.

Ограничения Теории хаоса. Недостатки

Ограничения применения Теории хаоса связаны, главным образом, с выбором вводных параметров. Методы, выбранные для вычисления этих параметров зависят от динамики, лежащей в основе данных и вида анализа, которая в большинстве случаев очень сложна и не всегда точна.

Непросто найти непосредственное и прямое применение теории хаоса в деловой среде, однако определенно стоит применять анализ деловой среды с использованием знаний о хаосе.

Предположения Теории хаоса). Условия

    Небольшие действия приводят к достаточно большим последствиям, создавая хаотичную атмосферу.
Загрузка...
Top