Сила притяжения формула. Что такое гравитация для чайников: определение и теория простыми словами. Сила всемирного тяготения воздействует на полет ядра

Явление всемирного тяготения

Явление всемирного тяготения заключается в том, что между всеми телами во Вселенной действуют силы притяжения.

К выводу о существовании вил всемирного тяготения (их называют также гравитационными) пришел Ньютон в результате изучения движения Луны вокруг Земли и планет вокруг Солнца. Эти астрономические наблюдения были сделаны датским астрономом Тихо Браге. Тихо Браге измерил положение всех на тот момент известных планет и записал их координаты, но вывести окончательно, создать закон движения планет относительно Солнца Тихо Браге не удалось. Это сделал его ученик Иоганн Кеплер. Иоганн Кеплер воспользовался не только измерениями Тихо Браге, но и к тому времени уже достаточно обоснованной, используемой везде и всюду гелиоцентрической системой мира Коперника. Той системой, в которой считается, что в центре нашей системы находится Солнце и вокруг него обращаются планеты.

Рисунок 1. Гелиоцентрическая система мира (система Коперника)

В первую очередь Ньютон предположил, что все тела обладают свойством притяжения, т.е. те тела, которые обладают массами, притягиваются друг к другу. Это явление стали называть всемирным тяготением. А тела, которые притягивают друг к другу другие, создают силу. Эту силу, с которой тела притягиваются, стали называть гравитационной (от слова gravitas -- «тяжесть»).

Закон всемирного тяготения

Ньютону удалось получить формулу для вычисления силы взаимодействия тел, обладающих массами. Именно эту формулу и называют законом всемирного тяготения . Она была открыта в $1667$ г. Свое открытие И. Ньютон обосновал на астрономических наблюдениях

Сам $закон всемирного тяготения$ звучит так: два тела притягиваются друг к другу с силой, прямо пропорциональной произведению масс этих тел и обратно пропорциональной квадрату расстояния между ними.

Давайте рассмотрим величины, которые входят в этот закон. Итак, сам закон всемирного тяготения выглядит следующим образом:

Здесь есть еще одна величина - $G$, гравитационная постоянная . Ее физический смысл заключается в том, что она показывает, с какой силой взаимодействуют два тела массой в $1$ кг, каждый в $1$ кг, расположенные на расстоянии $1$ м. эта величина очень маленькая, она всего лишь по порядку величины составляет $10^{-11}.$

$G=6,67\cdot 10^{-11} \frac{H\cdot м^2}{кг^2}$

Такое ее значение говорит о том, в каком соотношении находятся, с какой силой взаимодействуют тела, находящиеся рядом, и даже если они будут достаточно близко располагаться (например, два стоящих человека), они абсолютно не почувствуют этого взаимодействия, поскольку порядок силы $10^{-11}$ не даст значительного ощущения. Действие гравитационной силы начинает сказываться только тогда, когда масса тел велика.

Границы применимости закона всемирного тяготения

В той форме, в которой мы используем закон всемирного тяготения, он справедлив не всегда, а только в некоторых случаях:

  • если размеры тел пренебрежимо малы по сравнению с расстоянием между ними;

Рисунок 2.

  • если оба тела однородны и имеют шарообразную форму - в этом случае, даже если расстояния между телами все-таки не так велики, закон всемирного тяготения применим, если тела обладают сферической формой и тогда расстояния определяются как расстояния между центрами рассматриваемых тел;

Рисунок 3.

  • если одно из взаимодействующих тел -- шар, размеры которого значительно больше размеров второго тела (любой формы) находящегося на поверхности этого шара или вблизи нее - это случай, движения спутников по своим орбитам вокруг Земли.

Рисунок 4.

Пример 1

Искусственный спутник движется по круговой орбите вокруг Земли со скоростью $1$ км/с на высоте 350000 км. Нужно определить массу Земли.

Дано: $v=1$ км/с, $R=350000$ км.

Найти: $M_{3} $-?

Так как спутник совершает движение вокруг Земли, то он обладает центростремительным ускорением, равным:

$F=G\frac{mM_{3} }{R^{2} } =ma$. (2)

С учетом (1) из (2) запишем выражение для нахождения массы Земли:

$M_{3} =\frac{v^{2} R}{G} =5,24\cdot 10^{24} $кг

Ответ: $M_{3} =5,24\cdot 10^{24} $ кг.

И. Ньютон сумел вывести из законов Кеплера один из фундаментальных законов природы - закон всемирного тяготения. Ньютон знал, что для всех планет Солнечной системы ускорение обратно пропорционально квадрату расстояния от планеты до Солнца и коэффициент пропорциональности - один и тот же для всех планет.

Отсюда следует прежде всего, что сила притяжения, действующая со стороны Солнца на планету, должна быть пропорциональна массе этой планеты. В самом деле, если ускорение планеты дается формулой (123.5), то сила, вызывающая ускорение,

где - масса этой планеты. С другой стороны, Ньютону было известно ускорение, которое Земля сообщает Луне; оно было определено из наблюдений движения Луны, обращающейся вокруг Земли. Это ускорение примерно в раз меньше ускорения , сообщаемого Землей телам, находящимся вблизи земной поверхности. Расстояние же от Земли до Луны равно приблизительно земным радиусам. Иными словами, Луна отстоит от центра Земли в раз дальше, чем тела, находящиеся на поверхности Земли, а ускорение ее в раз меньше.

Если принять, что Луна движется под действием притяжения Земли, то отсюда следует, что сила земного притяжения, так же как и сила притяжения Солнца, убывает обратно пропорционально квадрату расстояния от центра Земли. Наконец, сила притяжения Земли прямо пропорциональна массе притягиваемого тела. Этот факт Ньютон установил на опытах с маятниками. Он обнаружил, что период качаний маятника не зависит от его массы. Значит, маятникам разной массы Земля сообщает одинаковое ускорение, и, следовательно, сила притяжения Земли пропорциональна массе тела, на которое она действует. То же, конечно, следует из одинаковости ускорения свободного падения для тел разных масс, но опыты с маятниками позволяют проверить этот факт с большей точностью.

Эти сходные черты сил притяжения Солнца и Земли и привели Ньютона к заключению о том, что природа этих сил едина и что существуют силы всемирного тяготения, действующие между всеми телами и убывающие обратно пропорционально квадрату расстояния между телами. При этом сила тяготения, действующая на данное тело массы , должна быть пропорциональна массе .

Исходя из этих фактов и соображений, Ньютон сформулировал закон всемирного тяготения таким образом: любые два тела притягиваются друг к другу с силой, которая направлена по линии, их соединяющей, прямо пропорциональна массам обоих тел и обратно пропорциональна квадрату расстояния между ними, т. е. сила взаимного тяготения

где и - массы тел, - расстояние между ними, а - коэффициент пропорциональности, называемый гравитационной постоянной (способ ее измерения будет описан ниже). Сращивая эту формулу с формулой (123.4), видим, что , где - масса Солнца. Силы всемирного тяготения удовлетворяют третьему закону Ньютона. Это подтвердилось всеми астрономическими наблюдениями над движением небесных тел.

В такой формулировке закон всемирного тяготения применим к телам, которые можно считать материальными точками, т. е. к телам, расстояние между которыми очень велико по сравнению с их размерами, иначе следовало бы учитывать, что разные точки тел отстоят друг от друга на разные расстояния. Для однородных шарообразных тел формула верна при любом расстоянии между телами, если в качестве взять расстояние между их центрами. В частности, в случае притяжения тела Землей расстояние нужно отсчитывать от центра Земли. Это объясняет тот факт, что сила тяжести почти не убывает по мере увеличения высоты над Землей (§ 54): так как радиус Земли равен примерно 6400, то при изменении положения тела над поверхностью Земли в пределах даже десятков километров сила притяжения Земли остается практически неизменной.

Гравитационную постоянную можно определить, измерив все остальные величины, входящие в закон всемирного тяготения, для какого-либо конкретного случая.

Определить значение гравитационной постоянной впервые удалось при помощи крутильных весов, устройство которых схематически изображено на рис. 202. Легкое коромысло, на концах которого закреплены два одинаковых шара массы , повешено на длинной и тонкой нити. Коромысло снабжено зеркальцем, которое позволяет оптическим способом измерять малые повороты коромысла вокруг вертикальной оси. К шарам с разных сторон могут быть приближены два шара значительно большей массы .

Рис. 202. Схема крутильных весов для измерения гравитационной постоянной

Силы притяжения малых шаров к большим создают пару сил, вращающую коромысло по часовой стрелке (если смотреть сверху). Измерив угол, на который поворачивается коромысло при приближении к шарам шаров , и, зная упругие свойства нити, на которой подвешено коромысло, можно определить момент пары сил, с которыми притягиваются массы к массам . Так как массы шаров и и расстояние между их центрами (при данном положении коромысла) известны, то из формулы (124.1) может быть найдено значение . Оно оказалось равным

После того как было определено значение , оказалось возможным из закона всемирного тяготения определить массу Земли. Действительно, в соответствии с этим законом, тело массы , находящееся у поверхности Земли, притягивается к Земле с силой

где - масса Земли, а - ее радиус. С другой стороны, мы знаем, что . Приравняв эти величины, найдем

.

Таким образом, хотя силы всемирного тяготения, действующие между телами различной массы, равны, значительное ускорение получает тело малой массы, а тело большой массы испытывает малое ускорение.

Так как суммарная масса всех планет Солнечной системы составляет немногим больше массы Солнца, ускорение, которое испытывает Солнце в результате действия на него сил тяготения со стороны планет, ничтожно мало по сравнению с теми ускорениями, которые сила тяготения Солнца сообщает планетам. Относительно малы и силы тяготения, действующие между планетами. Поэтому при рассмотрении законов движения планет (законов Кеплера) мы не учитывали движения самого Солнца и приближенно считали, что траектории планет - эллиптические орбиты, в одном из фокусов которых находится Солнце. Однако в точных расчетах приходится принимать во внимание те «возмущения», которые вносят в движение самого Солнца или какой-либо планеты силы тяготения со стороны других планет.

124.1. Насколько уменьшится сила земного притяжения, действующая на ракетный снаряд, когда он поднимется на 600 км над поверхностью Земли? Радиус Земли принять равным 6400 км.

124.2. Масса Луны в 81 раз меньше массы Земли, а радиус Луны приблизительно в 3,7 раза меньше радиуса Земли. Найдите вес человека на Луне, если его вес на Земле равен 600Н.

124.3. Масса Луны в 81 раз меньше массы Земли. Найдите на линии, соединяющей центры Земли и Луны, точку, в которой равны друг другу силы притяжения Земли и Луны, действующие на помещенное в этой точке тело.

Все мы ходим по Земле потому, что она нас притягивает. Если бы Земля не притягивала все находящиеся на ее поверхности тела, то мы, оттолкнувшись от нее, улетели бы в космос. Но этого не происходит, и всем известно о существовании земного притяжения.

Притягиваем ли мы Землю? Притягивает Луна!

А притягиваем ли мы сами к себе Землю? Смешной вопрос, правда? Но давайте разберемся. Вы знаете, что такое приливы и отливы в морях и океанах? Каждый день вода уходит от берегов, неизвестно где шляется несколько часов, а потом, как ни в чем не бывало, возвращается обратно.

Так вот вода в это время находится не неизвестно где, а примерно посредине океана. Там образуется что-то наподобие горы из воды. Невероятно, правда? Вода, которая имеет свойство растекаться, сама не просто стекается, а еще и образует горы. И в этих горах сосредоточена огромная масса воды.

Просто прикиньте весь объем воды, который отходит от берегов во время отливов, и вы поймете, что речь идет о гигантских количествах. Но раз такое происходит, должна же быть какая-то причина. И причина есть. Причина кроется в том, что эту воду притягивает к себе Луна.

Вращаясь вокруг Земли, Луна проходит над океанами и притягивает к себе океанические воды. Луна вращается вокруг Земли, потому что она притягивается Землей. Но, выходит, что она и сама при этом притягивает к себе Землю. Земля, правда, для нее великовата, но ее влияние оказывается достаточным для перемещения воды в океанах.

Сила и закон всемирного тяготения: понятие и формула

А теперь пойдем дальше и подумаем: если два громадных тела, находясь неподалеку, оба притягивают друг друга, не логично ли предположить, что и тела поменьше тоже будут притягивать друг друга? Просто они намного меньше и сила их притяжения будет маленькой?

Оказывается, что такое предположение абсолютно верно. Абсолютно между всеми телами во Вселенной существуют силы притяжения или, другими словами, силы всемирного тяготения.

Первым такое явление обнаружил и сформулировал в виде закона Исаак Ньютон. Закон всемирного тяготения гласит: все тела притягиваются друг к другу, при этом сила их притяжения прямо пропорциональна массе каждого из тел и обратно пропорциональна квадрату расстояния между ними:

F = G * (m_1 * m_2) / r^2 ,

где F величина вектора силы притяжения между телами, m_1 и m_2 массы этих тел, r расстояние между телами, G гравитационная постоянная.

Гравитационная постоянная численно равна силе, которая существует между телами массами 1 кг, находящимися на расстоянии 1 метр. Эта величина найдена экспериментально: G=6,67*〖10〗^(-11) Н* м^2⁄〖кг〗^2 .

Возвращаясь к нашему исходному вопросу: «притягиваем ли мы Землю?», мы можем с уверенностью ответить: «да». Согласно третьему закону Ньютона мы притягиваем Землю ровно с такой же силой, с какой Земля притягивает нас. Силу эту можно рассчитать из закона всемирного тяготения.

А согласно второму закону Ньютона воздействие тел друг на друга какой-либо силой выражается в виде придаваемого ими друг другу ускорения. Но придаваемое ускорение зависит от массы тела.

Масса Земли велика, и она придает нам ускорение свободного падения. А наша масса ничтожно мала по сравнению с Землей, и поэтому ускорение, которое мы придаем Земле, практически равно нулю. Именно поэтому мы притягиваемся к Земле и ходим по ней, а не наоборот.

Исаак Ньютон выдвинул предположение, что между любыми телами в природе существуют силы взаимного притяжения. Эти силы называют силами гравитации или силами всемирного тяготения . Сила несмирного тяготения проявляется в космосе, Солнечной системе и на Земле.

Закон всемирного тяготения

Ньютон обобщил законы движения небесных тел и выяснил, что сила \(F \) равна:

\[ F = G \dfrac{m_1 m_2}{R^2} \]

где \(m_1 \) и \(m_2 \) - массы взаимодействующих тел, \(R \) - расстояние между ними, \(G \) - коэффициент пропорциональности, который называется гравитационной постоянной . Численное значение гравитационной постоянной опытным путем определил Кавендиш, измеряя силу взаимодействия между свинцовыми шарами.

Физический смысл гравитационной постоянной вытекает из закона всемирного тяготения. Если \(m_1 = m_2 = 1 \text{кг} \) , \(R = 1 \text{м} \) , то \(G = F \) , т. е. гравитационная постоянная равна силе, с которой притягиваются два тела по 1 кг на расстоянии 1 м.

Численное значение:

\(G = 6,67 \cdot{} 10^{-11} Н \cdot{} м^2/ кг^2 \) .

Силы всемирного тяготения действуют между любыми телами в природе, но ощутимыми они становятся при больших массах (или если хотя бы масса одного из тел велика). Закон же всемирного тяготения выполняется только для материальных точек и шаров (в этом случае за расстояние принимается расстояние между центрами шаров).

Сила тяжести

Частным видом силы всемирного тяготения является сила притяжения тел к Земле (или к другой планете). Эту силу называют силой тяжести . Под действием этой силы все тела приобретают ускорение свбодного падения.

В соответствии со вторым законом Ньютона \(g = F_Т /m \) , следовательно, \(F_T = mg \) .

Если M – масса Земли, R – ее радиус, m – масса данного тела, то сила тяжести равна

\(F = G \dfrac{M}{R^2}m = mg \) .

Сила тяжести всегда направлена к центру Земли. В зависимости от высоты \(h \) над поверхностью Земли и географической широты положения тела ускорение свободного падения приобретает различные значения. На поверхности Земли и в средних широтах ускорение свободного падения равно 9,831 м/с 2 .

Вес тела

В технике и быту широко используется понятие веса тела.

Вес тела обозначается \(P \) . Единица веса - ньютон (Н ). Так как вес равен силе, с которой тело действует на опору, то в соответствии с третьим законом Ньютона по величине вес тела равен силе реакции опоры. Поэтому, чтобы найти вес тела, необходимо определить, чему равна сила реакции опоры.

При этом предполагается, что тело неподвижно относительно опоры или подвеса.

Вес тела и сила тяжести отличаются по своей природе: вес тела является проявлением действия межмолекулярных сил, а сила тяжести имеет гравитационную природу.

Состояние тела, в котором его вес равен нулю, называют невесомостью . Состояние невесомости наблюдается в самолете или космическом корабле при движении с ускорением свободного падения независимо от направления и значения скорости их движения. За пределами земной атмосферы при выключении реактивных двигателей на космический корабль действует только сила всемирного тяготения. Под действием этой силы космический корабль и все тела, находящиеся в нем, движутся с одинаковым ускорением, по¬этому в корабле наблюдается состояние невесомости.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

В курсе физики 7 класса вы изучали явление всемирного тяготения. Оно заключается в том, что между всеми телами во Вселенной действуют силы притяжения.

К выводу о существовании сил всемирного тяготения (их называют также гравитационными) пришёл Ньютон в результате изучения движения Луны вокруг Земли и планет вокруг Солнца.

Заслуга Ньютона заключается не только в его гениальной догадке о взаимном притяжении тел, но и в том, что он сумел найти закон их взаимодействия, т. е. формулу для расчёта гравитационной силы между двумя телами.

Закон всемирного тяготения гласит:

  • два любых тела притягиваются друг к другу с силой, прямо пропорциональной массе каждого из них и обратно пропорциональной квадрату расстояния между ними

где F - модуль вектора силы гравитационного притяжения между телами массами m 1 и m 2 , г - расстояние между телами (их центрами); G - коэффициент, который называется гравитационной постоянной .

Если m 1 = m 2 = 1 кг и г = 1 м, то, как видно из формулы, гравитационная постоянная G численно равна силе F. Другими словами, гравитационная постоянная численно равна силе F притяжения двух тел массой по 1 кг, находящихся на расстоянии 1 м друг от друга. Измерения показывают, что

G = 6,67 10 -11 Нм 2 /кг 2 .

Формула даёт точный результат при расчёте силы всемирного тяготения в трёх случаях: 1) если размеры тел пренебрежимо малы по сравнению с расстоянием между ними (рис. 32, а); 2) если оба тела однородны и имеют шарообразную форму (рис. 32, б); 3) если одно из взаимодействующих тел - шар, размеры и масса которого значительно больше, чем у второго тела (любой формы), находящегося на поверхности этого шара или вблизи неё (рис. 32, в).

Рис. 32. Условия, определяющие границы применимости закона всемирного тяготения

Третий из рассмотренных случаев является основанием для того, чтобы рассчитывать по приведённой формуле силу притяжения к Земле любого из находящихся на ней тел. При этом в качестве расстояния между телами следует брать радиус Земли, поскольку размеры всех тел, находящихся на ее поверхности или вблизи неё, пренебрежимо малы по сравнению с земным радиусом.

По третьему закону Ньютона яблоко, висящее на ветке или падающее с неё с ускорением свободного падения, притягивает к себе Землю с такой же по модулю силой, с какой его притягивает Земля. Но ускорение Земли, вызванное силой её притяжения к яблоку, близко к нулю, поскольку масса Земли несоизмеримо больше массы яблока.

Вопросы

  1. Что было названо всемирным тяготением?
  2. Как иначе называются силы всемирного тяготения?
  3. Кто и в каком веке открыл закон всемирного тяготения?
  4. Сформулируйте закон всемирного тяготения. Запишите формулу, выражающую этот закон.
  5. В каких случаях следует применять закон всемирного тяготения для расчёта гравитационных сил?
  6. Притягивается ли Земля к висящему на ветке яблоку?

Упражнение 15

  1. Приведите примеры проявления силы тяготения.
  2. Космическая станция летит от Земли к Луне. Как меняется при этом модуль вектора силы её притяжения к Земле; к Луне? С одинаковыми или различными по модулю силами притягивается станция к Земле и Луне, когда она находится посередине между ними? Если силы различны, то какая больше и во сколько раз? Все ответы обоснуйте. (Известно, что масса Земли примерно в 81 раз больше массы Луны.)
  3. Известно, что масса Солнца в 330 000 раз больше массы Земли. Верно ли, что Солнце притягивает Землю в 330 000 раз сильней, чем Земля притягивает Солнце? Ответ поясните.
  4. Мяч, подброшенный мальчиком, в течение некоторого времени двигался вверх. При этом его скорость всё время уменьшалась, пока не стала равной нулю. Затем мяч стал падать вниз с возрастающей скоростью. Объясните: а) действовала ли на мяч сила притяжения к Земле во время его движения вверх; вниз; б) что послужило причиной уменьшения скорости мяча при его движении вверх; увеличения его скорости при движении вниз; в) почему при движении мяча вверх его скорость уменьшалась, а при движении вниз - увеличивалась.
  5. Притягивается ли к Луне человек, стоящий на Земле? Если да, то к чему он притягивается сильнее - к Луне или к Земле? Притягивается ли Луна к этому человеку? Ответы обоснуйте.
Загрузка...
Top