Уравнение прямоугольника. Прямоугольник. Формулы и свойства прямоугольника. Противоположные стороны равны

Определение.

Прямоугольник - это четырехугольник у которого две противоположные стороны равны и все четыре угла одинаковы.

Прямоугольники отличаются между собой только отношением длинной стороны к короткой, но все четыре угла у них прямые, то есть по 90 градусов.

Длинную сторону прямоугольника называют длиной прямоугольника , а короткую - шириной прямоугольника .

Стороны прямоугольника одновременно является его высотами.


Основные свойства прямоугольника

Прямоугольником могут быть параллелограмм, квадрат или ромб.

1. Противоположные стороны прямоугольника имеют одинаковую длину, то есть они равны:

AB = CD, BC = AD

2. Противоположные стороны прямоугольника параллельны:

3. Прилегающие стороны прямоугольника всегда перпендикулярны:

AB ┴ BC, BC ┴ CD, CD ┴ AD, AD ┴ AB

4. Все четыре угла прямоугольника прямые:

∠ABC = ∠BCD = ∠CDA = ∠DAB = 90°

5. Сумма углов прямоугольника равна 360 градусов:

∠ABC + ∠BCD + ∠CDA + ∠DAB = 360°

6. Диагонали прямоугольника имеют одинаковой длины:

7. Сумма квадратов диагонали прямоугольника равны сумме квадратов сторон:

2d 2 = 2a 2 + 2b 2

8. Каждая диагональ прямоугольника делит прямоугольник на две одинаковые фигуры, а именно на прямоугольные треугольники.

9. Диагонали прямоугольника пересекаются и в точке пересечения делятся пополам:

AO = BO = CO = DO = d
2

10. Точка пересечения диагоналей называется центром прямоугольника и также является центром описанной окружности

11. Диагональ прямоугольника является диаметром описанной окружности

12. Вокруг прямоугольника всегда можно описать окружность, так как сумма противоположных углов равна 180 градусов:

∠ABC = ∠CDA = 180° ∠BCD = ∠DAB = 180°

13. В прямоугольник, у которого длина не равна ширине, нельзя вписать окружность, так как суммы противоположных сторон не равны между собой (вписать окружность можно только в частный случай прямоугольника - квадрат).


Стороны прямоугольника

Определение.

Длиной прямоугольника называют длину более длинной пары его сторон. Шириной прямоугольника называют длину более короткой пары его сторон.

Формулы определения длин сторон прямоугольника

1. Формула стороны прямоугольника (длины и ширины прямоугольника) через диагональ и другую сторону:

a = √d 2 - b 2

b = √d 2 - a 2

2. Формула стороны прямоугольника (длины и ширины прямоугольника) через площадь и другую сторону:

b = d cos β
2

Диагональ прямоугольника

Определение.

Диагональю прямоугольника называется любой отрезок соединяющий две вершины противоположных углов прямоугольника.

Формулы определения длины диагонали прямоугольника

1. Формула диагонали прямоугольника через две стороны прямоугольника (через теорему Пифагора):

d = √a 2 + b 2

2. Формула диагонали прямоугольника через площадь и любую сторону:

4. Формула диагонали прямоугольника через радиус описанной окружности:

d = 2R

5. Формула диагонали прямоугольника через диаметр описанной окружности:

d = D о

6. Формула диагонали прямоугольника через синус угла, прилегающего к диагонали, и длину стороны противоположной этому углу:

8. Формула диагонали прямоугольника через синус острого угла между диагоналями и площадью прямоугольника

d = √2S: sin β


Периметр прямоугольника

Определение.

Периметром прямоугольника называется сумма длин всех сторон прямоугольника.

Формулы определения длины периметру прямоугольника

1. Формула периметру прямоугольника через две стороны прямоугольника:

P = 2a + 2b

P = 2(a + b )

2. Формула периметру прямоугольника через площадь и любую сторону:

P = 2S + 2a 2 = 2S + 2b 2
a b

3. Формула периметру прямоугольника через диагональ и любую сторону:

P = 2(a + √d 2 - a 2 ) = 2(b + √d 2 - b 2 )

4. Формула периметру прямоугольника через радиус описанной окружности и любую сторону:

P = 2(a + √4R 2 - a 2 ) = 2(b + √4R 2 - b 2 )

5. Формула периметру прямоугольника через диаметр описанной окружности и любую сторону:

P = 2(a + √D o 2 - a 2 ) = 2(b + √D o 2 - b 2 )


Площадь прямоугольника

Определение.

Площадью прямоугольника называется пространство ограниченный сторонами прямоугольника, то есть в пределах периметра прямоугольника.

Формулы определения площади прямоугольника

1. Формула площади прямоугольника через две стороны:

S = a · b

2. Формула площади прямоугольника через периметр и любую сторону:

5. Формула площади прямоугольника через радиус описанной окружности и любую сторону:

S = a √4R 2 - a 2 = b √4R 2 - b 2

6. Формула площади прямоугольника через диаметр описанной окружности и любую сторону:

S = a √D o 2 - a 2 = b √D o 2 - b 2


Окружность описанная вокруг прямоугольника

Определение.

Окружностью описанной вокруг прямоугольника называется круг проходящий через четыре вершины прямоугольника, центр которого лежит на пересечении диагоналей прямоугольника.

Формулы определения радиуса окружности описанной вокруг прямоугольника

1. Формула радиуса окружности описанной вокруг прямоугольника через две стороны:

В общем виде формула левых прямоугольников на отрезке выглядит следующим образом(21) :

В данной формуле x 0 =a, x n =b , так как любой интеграл в общем виде выглядит: (см. формулу18 ).

h можно вычислить по формуле 19 .

y 0 , y 1 ,..., y n-1 x 0 , x 1 ,..., x n-1 (x i =x i-1 +h ).

    Формула правых прямоугольников.

В общем виде формула правых прямоугольников на отрезке выглядит следующим образом(22) :

В данной формуле x 0 =a, x n =b (см. формулу для левых прямоугольников).

h можно вычислить по той же формуле, что и в формуле для левых прямоугольников.

y 1 , y 2 ,..., y n - это значения соответствующей функции f(x) в точкахx 1 , x 2 ,..., x n (x i =x i-1 +h ).

    Формула средних прямоугольников.

В общем виде формула средних прямоугольников на отрезке выглядит следующим образом(23) :

Где x i =x i-1 +h .

В данной формуле, как и в предыдущих, требуется h умножать сумму значений функции f(x), но уже не просто подставляя соответствующие значения x 0 ,x 1 ,...,x n-1 в функцию f(x), а прибавляя к каждому из этих значенийh/2 (x 0 +h/2, x 1 +h/2,..., x n-1 +h/2), а затем только подставляя их в заданную функцию.

h можно вычислить по той же формуле, что и в формуле для левых прямоугольников." [6 ]

На практике данные способы реализуются следующим образом:

    Mathcad ;

    Excel .

    Mathcad ;

    Excel .

Для того, чтобы вычислить интеграл по формуле средних прямоугольников в Excel, необходимо выполнить следующие действия:

    Продолжить работу в том же документе, что и при вычислении интеграла по формулам левых и правых прямоугольников.

    В ячейку E6 ввести текст xi+h/2, а в F6 - f(xi+h/2).

    Ввести в ячейку E7 формулу =B7+$B$4/2, скопировать эту формулу методом протягивания в диапазон ячеек E8:E16

    Ввести в ячейку F7 формулу =КОРЕНЬ(E7^4-E7^3+8), скопировать эту формулу методом протягивания в диапазон ячеек F8:F16

    Ввести в ячейку F18 формулу =СУММ(F7:F16).

    Ввести в ячейку F19 формулу =B4*F18.

    Ввести в ячейку F20 текст средних.

В итоге получаем следующее:

Ответ: значение заданного интеграла равно 13,40797.

Исходя из полученных результатов, можно сделать вывод, что формула средних прямоугольников является наиболее точной, чем формулы правых и левых прямоугольников.

1. Метод Монте-Карло

"Основная идея метода Монте-Карло заключается в многократном повторении случайных испытаний. Характерной особенностью метода Монте-Карло является использование случайных чисел (числовых значений некоторой случайной величины). Такие числа можно получать с помощью датчиков случайных чисел. Например, в языке программирования Turbo Pascal имеется стандартная функция random , значениями которой являются случайные чис¬ла, равномерно распределенные на отрезке . Сказанное означает, что если разбить указанный отрезок на некоторое число равных интервалов и вычислить значение функции random большое число раз, то в каждый интервал попадет приблизительно одинаковое количество случайных чисел. В языке программирования basin подобным датчиком является функция rnd. В табличном процессоре MS Excel функция СЛЧИС возвращает равномерно распределенное случайное число большее или равное 0 и меньшее 1 (изменяется при пересчете)" [7 ].

Для того чтобы его вычислить, необходимо воспользоваться формулой () :

Где (i=1, 2, …, n) – случайные числа, лежащие в интервале .

Для получения таких чисел на основе последовательности случайных чисел x i , равномерно распределенных в интервале , достаточно выполнить преобразование x i =a+(b-a)x i .

На практике данный способ реализуется следующим образом:

Для того, чтобы вычислить интеграл методом Монте-Карло в Excel, необходимо выполнить следующие действия:

    В ячейку B1 ввести текст n=.

    В ячейку B2 ввести текст a=.

    В ячейку B3 ввести текст b=.

В ячейку C1 ввести число 10.

    В ячейку C2 ввести число 0.

    В ячейку C3 ввести число 3,2.

    В ячейку A5 ввести I, в В5 – xi, в C5 – f(xi).

    Ячейки A6:A15 заполнить числами 1,2,3, …,10 – так как n=10.

    Ввести в ячейку B6 формулу =СЛЧИС()*3,2 (происходит генерация чисел в диапазоне от 0 до 3,2), скопировать эту формулу методом протягивания в диапазон ячеек В7:В15.

    Ввести в ячейку C6 формулу =КОРЕНЬ(B6^4-B6^3+8), скопировать эту формулу методом протягивания в диапазон ячеек C7:C15.

    Ввести в ячейку B16 текст «сумма», в B17 – «(b-a)/n», в B18 – «I=».

    Вести в ячейку C16 формулу =СУММ(C6:C15).

    Вести в ячейку C17 формулу =(C3-C2)/C1.

    Вести в ячейку C18 формулу =C16*C17.

В итоге получаем:

Ответ: значение заданного интеграла равно 13,12416.

Одним из базовых понятий математики является периметр прямоугольника. На эту тему существует множество задач, при решении которых не обойтись без формулы периметра и навыков его вычисления.

Основные понятия

Прямоугольник – это четырехугольник, у которого все углы прямые, а противоположные стороны попарно равны и параллельны. В нашей жизни многие фигуры имеют форму прямоугольника, например, поверхность стола, тетрадь и прочее.

Рассмотрим пример: по границам земельного участка необходимо поставить забор. Для того чтобы узнать длину каждой из сторон необходимо их измерить.

Рис. 1. Земельный участок формой прямоугольника.

Земельный участок имеет стороны длиной 2 м., 4 м., 2 м., 4 м. потому чтобы общую узнать длину забора необходимо сложить длины всех сторон:

2+2+4+4= 2·2+4·2 =(2+4)·2 =12 м.

Именно эта величина в общем случае и называется периметром. Таким образом, для нахождения периметра необходимо сложить все стороны фигуры. Для обозначения периметра используют букву P.

Для вычисления периметра прямоугольной фигуры не нужно разделять её на прямоугольники, нужно измерить линейкой (рулеткой) лишь все стороны данной фигуры и найти их сумму.

Периметр прямоугольника измеряется в мм., см., м., км и так далее. При необходимости, данные в задании, переводят в одинаковую систему измерения.

Периметр прямоугольника измеряется в различных единицах: мм., см., м., км и так далее. При необходимости, данные в задании, переводят в одну систему измерения.

Формула периметра фигуры

Если принять к вниманию тот факт, что противоположные стороны прямоугольника равны, то можно вывести формула периметра прямоугольника:

$P = (a+b) * 2$, где а, b – стороны фигуры.

Рис. 2. Прямоугольник, с обозначенными противоположными сторонами.

Существует и другой способ найти периметр. Если в задание дано лишь одну сторону и площадь фигуры, можно использовать выразить другую сторону через площадь. Тогда формула будет выглядеть следующим образом:

$P = {{2S + 2a2}\over{a}}$, где S – площадь прямоугольника.

Рис. 3. Прямоугольник с сторонами a, b .

Задание : Вычислить периметр прямоугольника, если его стороны равны 4 см. и 6 см.

Решение:

Используем формулу $P = (a+b)*2$

$P = (4+6)*2=20 см$

Таким образом, периметр фигуры $P = 20 см$.

Так как периметр – это сумма все сторон фигуры, то полупериметр это сумма только одной длины и ширины. Чтобы получить периметр необходимо полупериметр умножить на 2.

Площадь и периметр – это два основных понятия измерения любой фигуры. Их нельзя путать, хоть они и связаны между собой. Если увеличить, либо уменьшить площадь, то, соответственно, увеличится либо уменьшится его периметр.

Что мы узнали?

Мы узнали, как найти периметр прямоугольника. А также ознакомились с формулой его вычисления. С этой темой можно столкнуться не только при решении математических задач, но и в реальной жизни.

Тест по теме

Оценка статьи

Средняя оценка: 4.5 . Всего получено оценок: 365.

Прямоугольник — это четырехугольник, у которого каждый угол является прямым.

Доказательство

Свойство объясняется действием признака 3 параллелограмма (то есть \angle A = \angle C , \angle B = \angle D )

2. Противоположные стороны равны.

AB = CD,\enspace BC = AD

3. Противоположные стороны параллельны.

AB \parallel CD,\enspace BC \parallel AD

4. Прилегающие стороны перпендикулярны друг другу.

AB \perp BC,\enspace BC \perp CD,\enspace CD \perp AD,\enspace AD \perp AB

5. Диагонали прямоугольника равны.

AC = BD

Доказательство

Согласно свойству 1 прямоугольник является параллелограммом, а значит AB = CD .

Следовательно, \triangle ABD = \triangle DCA по двум катетам (AB = CD и AD — совместный).

Если обе фигуры — ABC и DCA тождественны, то и их гипотенузы BD и AC тоже тождественны.

Значит, AC = BD .

Только у прямоугольника из всех фигур (только из параллелограммов!) равны диагонали.

Докажем и это.

ABCD — параллелограмм \Rightarrow AB = CD , AC = BD по условию. \Rightarrow \triangle ABD = \triangle DCA уже по трем сторонам.

Получается, что \angle A = \angle D (как углы параллелограмма). И \angle A = \angle C , \angle B = \angle D .

Выводим, что \angle A = \angle B = \angle C = \angle D . Все они по 90^{\circ} . В сумме — 360^{\circ} .

Доказано!

6. Квадрат диагонали равен сумме квадратов двух прилежащих его сторон.

Это свойство справедливо в силу теоремы Пифагора.

AC^2=AD^2+CD^2

7. Диагональ делит прямоугольник на два одинаковых прямоугольных треугольника.

\triangle ABC = \triangle ACD, \enspace \triangle ABD = \triangle BCD

8. Точка пересечения диагоналей делит их пополам.

AO = BO = CO = DO

9. Точка пересечения диагоналей является центром прямоугольника и описанной окружности .

10. Сумма всех углов равна 360 градусов.

\angle ABC + \angle BCD + \angle CDA + \angle DAB = 360^{\circ}

11. Все углы прямоугольника прямые.

\angle ABC = \angle BCD = \angle CDA = \angle DAB = 90^{\circ}

12. Диаметр описанной около прямоугольника окружности равен диагонали прямоугольника.

13. Вокруг прямоугольника всегда можно описать окружность.

Это свойство справедливо в силу того, что сумма противоположных углов прямоугольника равна 180^{\circ}

\angle ABC = \angle CDA = 180^{\circ},\enspace \angle BCD = \angle DAB = 180^{\circ}

14. Прямоугольник может содержать вписанную окружность и только одну, если он имеет одинаковые длины сторон (является квадратом).


Оценка остаточного члена формулы: , или .

Назначение сервиса . Сервис предназначен для онлайн вычисления определенного интеграла по формуле прямоугольников.

Инструкция . Введите подынтегральную функцию f(x) , нажмите Решить. Полученное решение сохраняется в файле Word . Также создается шаблон решения в Excel . Ниже представлена видеоинструкция.

Правила ввода функции

Примеры
≡ x^2/(1+x)
cos 2 (2x+π) ≡ (cos(2*x+pi))^2
≡ x+(x-1)^(2/3) Это самая простая квадратурная формула вычисления интеграла, в которой используется одно значение функции
(1)
где ; h=x 1 -x 0 .
Формула (1) представляет собой центральную формулу прямоугольников. Вычислим остаточный член. Разложим в ряд Тейлора функцию y=f(x) в точке ε 0:
(2)
где ε 1 ; x∈. Проинтегрируем (2):
(3)

Во втором слагаемом подынтегральная функция нечетная, а пределы интегрирования симметричны относительно точки ε 0 . Поэтому второй интеграл равен нулю. Таким образом, из (3) следует .
Т. к. второй множитель подынтегрального выражения не меняет знак, то по теореме о среднем получим , где . После интегрирования получим . (4)
Сравнивая с остаточным членом формулы трапеций, мы видим, что погрешность формулы прямоугольников в два раза меньше, чем погрешность формулы трапеций. Этот результат верен, если в формуле прямоугольников мы берём значение функции в средней точке.
Получим формулу прямоугольников и остаточный член для интервала . Пусть задана сетка x i =a+ih, i=0,1,...,n, h=x i+1 -x i . Рассмотрим сетку ε i =ε 0 +ih, i=1,2,..,n, ε 0 =a-h/2. Тогда . (5)
Остаточный член .
Геометрически формула прямоугольников может быть представлена следующим рисунком:

Если функция f(x) задана таблично, то используют либо левостороннюю формулу прямоугольников (для равномерной сетки)

либо правостороннюю формулу прямоугольников

.
Погрешность этих формул оценивается через первую производную. Для интервала погрешность равна

; .
После интегрирования получим .

Пример . Вычислить интеграл при n=5:
а) по формуле трапеций;
б) по формуле прямоугольников;
в) по формуле Симпсона;
г) по формуле Гаусса;
д) по формуле Чебышева.
Рассчитать погрешность.
Решение. Для 5-ти узлов интегрирования шаг сетки составит 0.125.
При решении будем пользоваться таблицей значений функции. Здесь f(x)=1/x.

x f(x)
x0 0.5 y0 2
x1 0.625 y1 1.6
x2 0.750 y2 1.33
x3 0.875 y3 1.14
x4 1.0 y4 1
a) формула трапеций:
I=h/2×;
I=(0.125/2)×=0.696;
R= [-(b-a)/12]×h×y¢¢(x);
f¢¢(x)=2/(x 3).
Максимальное значение второй производной функции на интервале равно 16: max {f¢¢(x)}, xÎ=2/(0.5 3)=16, поэтому
R=[-(1-0.5)/12]×0.125×16=-0.0833;
б) формула прямоугольников:
для левосторонней формулы I=h×(y0+y1+y2+y3);
I=0.125×(2+1.6+1.33+1.14)=0.759;
R=[(b-a)/6]×h 2 ×y¢¢(x);
R=[(1-0.5)/6]×0.125 2 ×16=0.02;
в) формула Симпсона:
I=(2h/6)×{y0+y4+4×(y1+y3)+2×y2};
I=(2×0.125)/6×{2+1+4×(1.6+1.14)+2×1.33}=0.693;
R=[-(b-a)/180]×h 4 ×y (4) (x);
f (4) (x)=24/(x 5)=768;
R=[-(1-0.5)/180]×(0.125) 4 ×768= - 5.2 e -4;
г) формула Гаусса:
I=(b-a)/2×;
x i =(b+a)/2+t i (b-a)/2
(A i , t i - табличные значения).
t (n=5) A (n=5)
x1 0.9765 y1 1.02 t 1 0.90617985 A 1 0.23692688
x2 0.8846 y2 1.13 t 2 0.53846931 A 2 0.47862868
x3 0.75 y3 1.33 t 3 0 A 3 0.56888889
x4 0.61 y4 1.625 t 4 -0.53846931 A 4 0.47862868
x5 0.52 y5 1.91 t 5 -0.90617985 A 5 0.23692688
I=(1-0.5)/2×(0.2416+0.5408+0.7566+0.7777+0.4525)=0.6923;
д) формула Чебышева:
I=[(b-a)/n] ×S f(x i), i=1..n,
x i =(b+a)/2+[ t i (b-a)]/2 - необходимое приведение интервала интегрирования к интервалу [­­-1;1].
Для n=5
t1 0.832498
t2 0.374541
t3 0
t4 -0.374541
t5 -0.832498
Найдем значения x и значения функции в этих точках:
x1 0,958 f(x1) 1,043
x2 0,844 f(x2) 1,185
x3 0,75 f(x3) 1,333
x4 0,656 f(x4) 1,524
x5 0,542 f(x5) 1,845
Сумма значений функции равна 6,927.
I=(1-0,5)/5×6,927=0,6927.
Загрузка...
Top